共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
The investigations on the photochemical reaction of chlorobenzene with nitrogen oxides in air were carried out using the reaction vessels made of Pyrex glass and quartz, respectively. The irradiation of chlorobenzene in the Pyrex glass vessel gave m-chloronitrobenzene, 2-chloro-6-nitrophenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol, while the irradiation of chlorobenzene in the quartz vessel resulted in m-chloronitrobenzene, p-nitrophenol, 2-chloro-4-nitrophenol, 3-chloro-2-nitrophenol, 3-chloro-6-nitrophenol and 3-chloro-4-nitrophenol.The formation mechanism of these chloronitrophenols was considered using the theory of the nitro-nitrite rearrangement of chloronitrobenzenes. 相似文献
4.
5.
6.
7.
Genevieve Obermeyer Sara M. Aschmann Roger Atkinson Janet Arey 《Atmospheric environment (Oxford, England : 1994)》2009,43(24):3736-3744
To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples. 相似文献
8.
9.
《Atmospheric environment(England)》1988,22(2):403-409
Laboratory and field sampling experiments were conducted to determine the phase-distribution of polynuclear aromatic hydrocarbons (PAH) in the ambient atmosphere and to determine the potential for artifact formation due to volatilization and ozone (O3) reaction during normal sampling conditions. The study was conducted in two segments to investigate both summer and winter ambient temperature effects. The winter measurements reflect stronger association of PAH with the particulate phase than the summer data, but data from both seasons show appreciable filter losses due to volatilization of phenanthrene, anthracene, fluoranthene, benz(a)anthracene and chrysene. No evidence was found for volatilization of the heavier PAH, including benzo(e)pyrene, benzo(a)pyrene, indeno(l,2,3-c,d)pyrene, benzo(g,h,i)perylene and coronene. Although O3 reacted readily with particulate matter that was freshly spiked with PAH in the laboratory experiments, no evidence was found for reaction of O3 with particulate matter during the field sampling experiments. 相似文献
10.
11.
能量注入对放电等离子体去除气相苯系物的影响 总被引:1,自引:0,他引:1
采用正极性高压直流供电和串齿线放电极--管式接地极构成的放电等离子体反应器,研究了苯系物(苯、甲苯和对二甲苯)去除效率与供电电压之间的关系,以及放电极齿轮数对苯系物去除效率、COx(CO2 CO)生成量和能量效率的影响.研究结果表明,苯系物的去除效率、COx生成量皆随电压升高而增大.随着电压升高,能量效率先升后降,当电压为11 kV左右时,能量效率最高.对应放电齿轮数为31的苯系物去除效率、COx生成量和能量效率皆高于放电齿轮数为55或7,这表明对应特定的等离子体反应器,有一最佳放电齿数匹配. 相似文献
12.
13.
Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane 总被引:3,自引:0,他引:3
The photochemical degradation of 11 chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and the corresponding 5 parent PAHs was examined to simulate the compound’s fate on aerosol surfaces. All the ClPAHs and PAHs decayed according to the first-order reaction rate kinetics. The photolysis rates of ClPAHs varied greatly according to the skeleton of PAHs; the rates of chlorophenanthrenes (ClPhes) and 1-chloropyrene were higher than those of corresponding parent PAHs, whereas chlorofluoranthenes, 7-chlorobenz[a]anthracene and 6-chlorobenzo[a]pyrene were more stable under irradiation compared to respective parent PAH. Considering the photoproducts of ClPhes detected, the oxidation could occur immediately at positions of the highest frontier electron density. Finally, the quantitative structure-property relationship models were developed for direct photolysis half-lives and average quantum yields of the ClPAHs and parent PAHs, in which the significant factors affecting photolysis were ELUMO+1, total energy and surface area, and ELUMO, ELUMO − EHOMO and total energy, respectively. 相似文献
14.
The decomposition of benzene and toluene in air streams by UV/TiO2 process was studied in different annular photoreactors under various operating conditions. The shells of reactors used in this research are made of stainless steel, Pyrex glass, or titanium. The TiO2 film was coated to the inner surface of the reactors by either rotating coating or sol-gel techniques. The TiO2 films coated by sol-gel technique were found to be smoother and more uniform than those coated by rotating coating. However, experimental results indicated that the photocatalysis of benzene or toluene in a glass reactor with rotating-coated TiO2 film delivered higher decompositions in air streams than that with sol-gel coated reactors. Benzene and toluene were decomposed more effectively in a coated glass reactor than in a coated stainless steel reactor under the same operating conditions. The presence of water vapor in air-stream plays an important role in the decomposition of benzene and toluene, and a relative humidity of approximately 5-6% was found to be adequate. The presence of excessive amounts of humidity retarded the decomposition to certain extents possibly results from the competitive adsorption of water molecules on the active sites of TiO2. 相似文献
15.
16.
17.
Polychlorinated benzenes, dibenzo-p-dioxins (PCDD), and dibenzofurans (PCDF) may be formed below the combustion temperature in fly ash from municipal solid waste incinerators (MSWI). Copper catalyzes this formation, possibly by the Deacon reaction. Many other elements are also Deacon catalysts or promoters, and here we report results from a statistically designed experiment with 15 metal oxides added to fly ash and heated at 300 degrees C for 2h in an air atmosphere. A resolution IV fractional factorial design with four replicates was completed in 36 runs with the oxides of magnesium, yttrium, titanium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, zinc, and tin. All samples were analyzed for chlorinated benzenes and the results were evaluated by analysis of variance. The addition of copper significantly increased the amounts of the chlorinated benzenes, while cobalt, chromium and vanadium decreased the net formation. The oxides of zinc and iron seemed to have a slightly positive and negative effect respectively. The findings in this study seem to corroborate our previously reported results regarding the different catalytic effects of copper and chromium, and lack of a significant effect by nickel. Besides chromium, it also identifies cobalt and vanadium as potent catalysts for oxidative degradation of the chlorinated aromatic compounds found in MSWI fly ash. 相似文献
18.
Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction 总被引:13,自引:0,他引:13
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5. 相似文献
19.
Benzo(a)pyrene [B(a)P] air levels were measured in Florence (Italy) in the period 1992-2001. For the period 1999-2000 seven polycyclic aromatic hydrocarbons (PAH) (benzo(a)anthracene, crysene, benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene, dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP)), were measured in the air in four different sites (one with heavy traffic (A), one in a park (B), one in a residential area (C) and one in a hill area (D)). B(a)P levels were elevated in 1992-1998 (maximum average value of winter months: 5.8 ng/ m3) but a decreasing trend was observed in the following years, probably due to improvement in vehicle emissions. The sum of PAH in the air in the period 1999-2000 was about one order of magnitude lower in the hill site (D) relative to the urban sites, and residential areas (B and C) had values 2.5-3 times lower compared to site A with a heavy traffic. PAH concentrations decreased in the warmer seasons of 2000 in all sites. A negative correlation was found between PAH levels and ozone. A positive correlation with carbon monoxide (CO) (r = 0.862, P < 0.001) and low B(a)P/BGP ratios, ranging from 0.44 to 0.51, indicated that vehicular traffic was the major PAH source in all monitored sites. Using B(a)P(TEF) values (toxic equivalency factors) for evaluating the biological activity of PAH, we found that the highest PAH contributors in terms of potential air carcinogenic activity were B(a)P and DBA. Therefore, in addition to B(a)P, DBA concentration should be considered in the evaluation of air quality in terms of PAH contamination. 相似文献