共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicolas P. Zegre Andrew J. Miller Aaron Maxwell Samuel J. Lamont 《Journal of the American Water Resources Association》2014,50(5):1257-1272
In the Appalachian region of the eastern United States, mountaintop removal mining (MTM) is a dominant driver of land‐cover change, impacting 6.8% of the largely forested 4.86 million ha coal fields region. Recent catastrophic flooding and documented biological impairment downstream of MTM has drawn sharp criticism to this practice. Despite its extent, scale, and use since the 1970s, the impact of MTM on hydrology is poorly understood. Therefore, the goal of this study was a multiscale evaluation to establish the nature of hydrologic impacts associated with MTM. To quantify the extent of MTM, land‐cover change over the lifetime of this practice is estimated for a mesoscale watershed in southern West Virginia. To assess hydrologic impacts, we conducted long‐term trend analyses to evaluate for systematic changes in hydrology at the mesoscale, and conducted hydrometric and response time modeling to characterize storm‐scale responses of a MTM‐impacted headwater catchment. Results show a general trend in the conversion of forests to mines, and significant decreases in maximum streamflow and variability, and increases in base‐flow ratio attributed to valley fills and deep mine drainage. Decreases in variability are shown across spatial and temporal scales having important implications for water quantity and quality. However, considerable research is necessary to understand how MTM impacts hydrology. In an effort to inform future research, we identify existing knowledge gaps and limitations of our study. 相似文献
2.
Pamela J. Lombard David J. Holtschlag 《Journal of the American Water Resources Association》2018,54(4):949-961
We test the use of a mixed‐effects model for estimating lag to peak for small basins in Maine (drainage areas from 0.8 to 78 km2). Lag to peak is defined as the time between the center of volume of the excess rainfall during a storm event and the resulting peak streamflow. A mixed‐effects model allows for multiple observations at sites without violating model assumptions inherent in traditional ordinary least squares models, which assume each observation is independent. The mixed model includes basin drainage area and maximum 15‐min rainfall depth for individual storms as explanatory features. Based on a remove‐one‐site cross‐validation analysis, the prediction errors of this model ranged from ?42% to +73%. The mixed model substantially outperformed three published models for lag to peak and one published model for centroid lag for estimating lag to peak for small basins in Maine. Lag to peak estimates are a key input to rainfall–runoff models used to design hydraulic infrastructure. The improved accuracy and consistency with model assumptions indicates that mixed models may provide increased data utilization that could enhance models and estimates of lag to peak in other regions. 相似文献
3.
Paul H. Whitfield 《Journal of the American Water Resources Association》1988,24(4):775-780
ABSTRACT: Water quality monitoring cannot address every information need through one data collection procedure. This paper discusses the goals and related procedures for designing water quality monitoring programs. The discussion focuses on the broad information needs of those agencies operating water quality networks. These information needs include the ability to assess trends and environmental impacts, determine compliance with objectives or standards, estimate mass transport, and perform general surveillance. Each of these information needs has different data requirements. This paper outlines these goals and discusses factors to consider in developing a monitoring plan on a site by site basis. 相似文献
4.
Richard H. McCuen L. Douglas James 《Journal of the American Water Resources Association》1972,8(5):965-975
ABSTRACT. In urban hydrologic studies, it is often necessary to determine the effect of changes in urban land use patterns on such runoff characteristics as flood peaks and flow volumes. Nonparametric statistical methods have certain properties that make them a valuable tool for detecting hydrologic change caused by a treatment, such as urbanization, that changes watershed over a period of time. As many hydrologists do not have a working familiarity with nonparametric methods, a number of them are used for illustrative purposes to analyze the effect of urbanization on 24 years of annual flood peaks for a Louisville, Kentucky, watershed. In the example, urbanization was found to increase the central tendency, but not the dispersion of the peaks. Peak flows modeled by holding watershed parameters constant were also found to be increasing because of an upward trend in precipitation. By following the numerical examples in the paper and looking up test statistics in referenced sources, the reader can easily apply these methods to other situations. 相似文献
5.
Michele C. Eddy Jennifer Phelan Lauren Patterson Jessie Allen Sam Pearsall 《Journal of the American Water Resources Association》2017,53(1):30-41
Hydroecological classification systems are typically based on an assemblage of streamflow metrics and seek to divide streams into ecologically relevant classes. Assignment of streams to classes is suggested as an initial step in the process of establishing ecological flow standards. We used two distinct hydroecological river classification systems available within North Carolina to evaluate the ability of a hydrologic model to assign the same classes as those determined by observed streamflows and to assess the transferability of such systems to ungaged streams. Class assignments were examined by rate of overall matches, rate of class matches, spatial variability in matches, and time period used in class assignment. The findings of this study indicate assignments of stream class: (1) are inconsistent among different classification systems; (2) differ between observed and modeled data; and (3) are sensitive to the period of record within observed data. One clear source of inconsistency/sensitivity in class assignments lies with the use of threshold values for metrics that distinguish stream classes, such that even small changes in metric values can result in different class assignments. Because these two hydroecological classification systems are representative of other classification systems that rely on quantitative decision thresholds, it can be surmised that the use of such systems based on stream flow metrics is not a reliable approach for guiding ecological flow determinations. 相似文献
6.
Thomas H. Barringer Robert G. Reiser Curtis V Price 《Journal of the American Water Resources Association》1994,30(2):283-295
ABSTRACT: Parts of the Raritan River basin in central New Jersey have undergone increasing development over the last several decades. The increasing population relies on the region's ground water and surface water sources for its residential, commercial, and industrial water supply. Urbanization, regionalized wastewater-treatment facilities, stream channel alterations, and interbasin transfers of water can all affect water availability. This pilot study was conducted to determine whether significant trends exist in the base-flow and overland-runoff characteristics of streams in two subbasins with different percentages of urban/built-up land (Anderson et at., 1976). Changes in flow characteristics that could indicate future reductions in safe water yield of the Raritan River basin were examined. Flow and flow variability of the steams draining these two subbasins have increased over time. Many of the flow measures studied experienced pronounced trend shifts about 1960. The cause of these changes cannot be readily determined from the data, nor is it clear whether the increased flow variability lies outside the natural range of flow variability of the streams draining the subbasins. 相似文献
7.
Jurgen D. Garbrecht Jeanne M. Schneider Michael W. Van Liew 《Journal of the American Water Resources Association》2006,42(5):1285-1295
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments. 相似文献
8.
Parker J. Wigington Scott G. Leibowitz Randy L. Comeleo Joseph L. Ebersole 《Journal of the American Water Resources Association》2013,49(1):163-182
Wigington, Parker J., Jr., Scott G. Leibowitz, Randy L. Comeleo, and Joseph L. Ebersole, 2012. Oregon Hydrologic Landscapes: A Classification Framework. Journal of the American Water Resources Association (JAWRA) 1‐20. DOI: 10.1111/jawr.12009 Abstract: There is a growing need for hydrologic classification systems that can provide a basis for broad‐scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classification approach that describes factors of climate‐watershed systems that control the hydrologic characteristics of watersheds. Our assessment units are incremental watersheds (i.e., headwater watersheds or areas draining directly into stream reaches). Major components of the classification include indices of annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To evaluate the usefulness of our approach, we identified 30 rivers with long‐term streamflow‐gauging records and without major diversions and impoundments. We used statistical clustering to group the streams based on the shapes of their annual hydrographs. Comparison of the streamflow clusters and HL distributions within river basin clusters shows that the Oregon HL approach has the ability to provide insights about the expected hydrologic behavior of HLs and larger river basins. The Oregon HL approach has potential to be a useful framework for comparing hydrologic attributes of streams and rivers in the Pacific Northwest. 相似文献
9.
M. Jason Todd Parker J. Wigington Jr. Eric A. Sproles 《Journal of the American Water Resources Association》2017,53(5):1008-1031
Hydrologic landscapes (HLs) have proven to be a useful tool for broad scale assessment and classification of landscapes across the United States as they help organize larger geographical areas into areas of similar hydrologic characteristics. We developed a HL classification for the Bristol Bay watershed of southwest Alaska that incorporates indices of annual climate and seasonality, terrain, geology, and the influences of large lakes and glaciers. A HL classification is particularly useful in this large watershed because of its hydrologic and landscape variability, important salmon fishery, variety of environmental and potential anthropogenic stressors, and lack of widespread hydrologic data. Following creation of Bristol Bay basin‐wide HL classes, we compared the HL distributions within watersheds grouped by two calculated runoff parameters derived from available long‐term streamflow records and found HL distributions within these groups provided predictive insight on hydrologic behavior. Using these developed runoff groups, we estimated expected hydrologic behavior in watersheds across the larger Bristol Bay watershed that lacked gauged streamflow records. The HL approach provides a scientific basis for estimating the first‐order hydrologic behavior of watersheds and landscapes that lack detailed hydrologic information. 相似文献
10.
Soon Thiam Khu Shie‐Yui Liong Vladan Babovic Henrik Madsen Nitin Muttil 《Journal of the American Water Resources Association》2001,37(2):439-451
ABSTRACT: Genetic programming (GP), a relatively new evolutionary technique, is demonstrated in this study to evolve codes for the solution of problems. First, a simple example in the area of symbolic regression is considered. GP is then applied to real‐time runoff forecasting for the Orgeval catchment in France. In this study, GP functions as an error updating scheme to complement a rainfall‐runoff model, MIKE11/NAM. Hourly runoff forecasts of different updating intervals are performed for forecast horizons of up to nine hours. The results show that the proposed updating scheme is able to predict the runoff quite accurately for all updating intervals considered and particularly for updating intervals not exceeding the time of concentration of the catchment. The results are also compared with those of an earlier study, by the World Meteorological Organization, in which autoregression and Kalman filter were used as the updating methods. Comparisons show that GP is a better updating tool for real‐time flow forecasting. Another important finding from this study is that nondimensionalizing the variables enhances the symbolic regression process significantly. 相似文献
11.
K W. King 《Journal of the American Water Resources Association》2000,36(4):791-797
ABSTRACT: Data collection frequency in automated systems is user determined and can range from seconds to hours or days. Currently, there is no standard or recommended frequency interval for collecting precipitation data from automated systems for input to event‐based models such as Green‐Ampt Mein‐Larsen (GAML). Data from 47 storm events at seven locations were used to simulate the response of GAML excess rainfall to temporally aggregated precipitation data. No difference in model efficiency was recognized when comparing one‐minute interval data (R2= 1.00) to five‐minute data (R2= 1.00). Very little model efficiency was lost at a 10‐minute (R2= 0.96) interval. After 10‐minutes, decline in efficiency became more rapid with R2= 0.16 at one hour. The combined effect of time interval with respect to drainage area, hydraulic conductivity, maximum 30‐minute intensity, and total precipitation also revealed similar results. 相似文献
12.
S. Rocky Durrans Steven J. Burian Stephan J. Nix Ahmed Hajji Robert E. Pitt Chi-Yuan Fan Richard Field 《Journal of the American Water Resources Association》1999,35(5):1213-1221
Hydrologic modeling of urban watersheds for designs and analyses of stormwater conveyance facilities can be performed in either an event-based or continuous fashion. Continuou simulation requires, among other things, the use of a time series of rainfall amounts. However, for urban drainage basins, which are typically small, the temporal resolution of the rainfall time series must be quite fine, and often on the order of 5 to 15 minutes. This poses a significant challenge because rainfall-gauging records are usually kept only for hourly or longer time steps. The time step sizes in stochastic rainfall generators are usually also too large for application to urban runoff modeling situations. Thus, there is a need for methods by which hourly rainfall amounts can be disaggregated to shorter time intervals. This paper presents and compares a number of approaches to this problem, which are based on the use of polynomial approximating functions. Results of these evaluations indicate that a desegregation method presented by Ormsbee (1989) is a relatively good performer when storm durations are short (2 hours), and that a quadratic spline-based approach is a good choice for longer-duration storms. Based on these results, the Ormsbee technique is recommended because it provides good performance, and can be applied easily to long time series of precipitation records. The quadratic spline-based approach is recommended as a close second choice because it performed the best most consistently, but remains more difficult to apply than the Ormsbee technique. Results of this study also indicate that, on average, all of the disaggregation methods evaluated introduce a severe negative bias into maximum rainfall intensities. This is cause for some well-justified concern, as the characteristics of runoff hydrographs are quite sensitive to maximum storm intensities. Thus, there is a need to continue the search for simple yet effective hourly rainfall disaggregation methods. 相似文献
13.
Shie‐Yui Liong Tirtha Raj Gautam Soon Thiam Khu Vladan Babovic Maarten Keijzer Nitin Muttil 《Journal of the American Water Resources Association》2002,38(3):705-718
ABSTRACT: Genetic Programming (GP) is a domain‐independent evolutionary programming technique that evolves computer programs to solve, or approximately solve, problems. To verify GP's capability, a simple example with known relation in the area of symbolic regression, is considered first. GP is then utilized as a flow forecasting tool. A catchment in Singapore with a drainage area of about 6 km2 is considered in this study. Six storms of different intensities and durations are used to train GP and then verify the trained GP. Analysis of the GP induced rainfall and runoff relationship shows that the cause and effect relationship between rainfall and runoff is consistent with the hydrologic process. The result shows that the runoff prediction accuracy of symbolic regression based models, measured in terms of root mean square error and correlation coefficient, is reasonably high. Thus, GP induced rainfall runoff relationships can be a viable alternative to traditional rainfall runoff models. 相似文献
14.
Mark R. Williams Kevin W. King Chad J. Penn 《Journal of the American Water Resources Association》2018,54(5):1039-1054
In contrast to spatial inequality, there are currently no methods for leveraging information on temporal inequality to improve conservation efficacy. The objective of this study was to use Lorenz curves to quantify temporal inequality in surface runoff and tile drainage, identify controls on nutrient loading in these flowpaths, and develop design flows for structural conservation practices. Surface runoff (n = 94 site‐years) and tile drainage (n = 90 site‐years) were monitored on 40 fields in Ohio. Results showed, on average, 80% of nitrate‐nitrogen, soluble reactive phosphorus (P), and total P loads occurred between 7 and 12 days per year in surface runoff and between 32 and 58 days per year in tile drainage. Similar temporal inequality between discharge and load provided evidence that loading was transport‐limited and highlighted the critical role hydrologic connectivity plays in nutrient delivery from tile‐drained fields. Design flow criterion for sizing structural practices based on load reduction goals was developed by combining Lorenz curves and flow duration curves. Comparing temporal inequality between fields and the Maumee River, the largest tributary to the western Lake Erie Basin, revealed challenges associated with achieving watershed load reduction goals with field‐scale conservation. In‐field (i.e., improved nutrient and water management), edge‐of‐field (i.e., structural practices), and instream practices will all be required to meet nutrient reduction goals from tile‐drained watersheds. 相似文献
15.
Geoffrey M. Bonnin Kazungu Maitaria Michael Yekta 《Journal of the American Water Resources Association》2011,47(6):1173-1182
Bonnin, Geoffrey M., Kazungu Maitaria, and Michael Yekta, 2011. Trends in Rainfall Exceedances in the Observed Record in Selected Areas of the United States. Journal of the American Water Resources Association (JAWRA) 47(6): 1173–1182. DOI: 10.1111/j.1752‐1688.2011.00603.x Abstract: Semantic differences have led to a gap in the understanding of the impacts of climate change on precipitation frequency estimates. There is popular perception that heavy rainfalls have become more frequent, and that this trend will increase with global warming. Most of the literature examines this question from the point of view of climatology using definitions of “heavy,”“very heavy,” or “extreme” rainfall, which are different from those commonly used by civil engineers. This article identifies the differences in meaning used by the climate and civil engineering communities and examines trends in the observed record in the frequency of exceedances (not trends in magnitudes). Using concepts recognized as the basis for design of the Nation’s civil infrastructure, we look at trends in the number of exceedances of thresholds for a variety of precipitation frequencies and event durations used by civil engineers. We found that the estimated trends in exceedances at one‐day and multiday durations were statistically significant and increasing for the Ohio River Basin and surrounding states but the reverse was true for the Semiarid Southwest (i.e., not significant and decreasing trends). In addition, we found the magnitude of the trends was small for all but the more frequent events and also small with respect to the uncertainty associated with the precipitation frequency estimates themselves. 相似文献
16.
Alan Mair Ali Fares Aly El‐Kadi 《Journal of the American Water Resources Association》2007,43(1):148-159
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow. 相似文献
17.
Kai Duan Ge Sun Peter V. Caldwell Steven G. McNulty Yang Zhang 《Journal of the American Water Resources Association》2018,54(3):694-707
Although it is well established that the availability of upstream flow (AUF) affects downstream water supply, its significance has not been rigorously categorized and quantified at fine resolutions. This study aims to fill this gap by providing a nationwide inventory of AUF and local water resource, and assessing their roles in securing water supply across the 2,099 8‐digit hydrologic unit code watersheds in the conterminous United States (CONUS). We investigated the effects of river hydraulic connectivity, climate variability, and water withdrawal, and consumption on water availability and water stress (ratio of demand to supply) in the past three decades (i.e., 1981–2010). The results show that 12% of the CONUS land relied on AUF for adequate freshwater supply, while local water alone was sufficient to meet the demand in another 74% of the area. The remaining 14% highly stressed area was mostly found in headwater areas or watersheds that were isolated from other basins, where stress levels were more sensitive to climate variability. Although the constantly changing water demand was the primary cause of escalating/diminishing stress, AUF variation could be an important driver in the arid south and southwest. This research contributes to better understanding of the significance of upstream–downstream water nexus in regional water availability, and this becomes more crucial under a changing climate and with intensified human activities. 相似文献
18.
Ed. McKenzie 《Journal of the American Water Resources Association》1985,21(4):645-650
ABSTRACT: Simple models are presented for use in the modeling and generation of sequences of dependent discrete random variables. The models are essentially Markov Chains, but are structurally autoregressions, and so depend on only a few parameters. The marginal distribution is an intrinsic component in the specification of each model, and the Poisson, Geometric, Negative Binomial and Binomial distributions are considered. Details are also given for the introduction of time-dependence into the means of the sequences so that seaonality can be treated simply. 相似文献
19.
ABSTRACT: The performance of a hydrological model is usually assessed first by visual inspection of the measured and computed hydrographs. Numerous statistical criteria are available for numerical evaluations of model accuracy in each single year, in a particular season of the year, or in a sequence of years or seasons. In the last case, the problem of computing the overall result has to be considered. If too many criteria are used and the criteria are switched frequently, an assessment of a model's performance becomes difficult for a potential user. Therefore, this paper concentrates on just three criteria and their combined evaluation: The Nash-Sutcliffe coefficient, which compares the model computed discharge with the average measured discharge; the “coefficient of gain from daily means” in which a uniform average discharge is replaced by daily average discharges; and the volumetric difference between the total measured and computed runoff. The three criteria are combined in a three dimensional representation that allows intercomparisons of model performance in a single diagram. 相似文献
20.
Joseph M. Colonell George R. Higgins 《Journal of the American Water Resources Association》1973,9(4):793-800
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds. 相似文献