首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

2.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

3.
人工湿地处理污水的研究   总被引:14,自引:4,他引:14  
王爱萍  周琪 《四川环境》2005,24(2):76-80
本文简要地介绍了国内外人工湿地在处理污水方面的研究动态,概述了N、P的去除效率、机理及人工湿地的设计过程,同时展示了此技术在我国广泛的应用前景,并提出了该领域的研究方向。  相似文献   

4.
    
ABSTRACT. Estimates of peak flows, with specified return periods, are needed in practice for the design of works that affect streams in forested areas. In the province of British Columbia (B.C.), Canada, the new Forest Practices Code specifies the 100-year instantaneous peak flow (Q100) for the design of bridges and culverts for stream crossings under forest roads; and many practitioners are engaged in making such estimates. The state of the art is still quite primitive, very similar to the state of urban hydrology 30 years ago, when popular estimating techniques were used with little consideration given to their applicability. Urban hydrology then evolved on a much more scientific basis, such that within about a 10-year period, standard approaches to design were developed. Forest hydrology should follow the same pattern, at least as far as estimating design flows is concerned. Popular present day design procedures include the rational method and other empirical approaches based on rainfall data, as use of the standard flood frequency approach is limited by the paucity of relevant flow data. Estimating procedures based on peak streamflow measurements and statistics are likely to evolve, and these will include distinctions for rain, snowmelt, and rain on snow floods. Guidelines will also be developed for selecting and applying appropriate procedures for particular areas.  相似文献   

5.
    
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

6.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

7.
8.
    
ABSTRACT: Urban development has compromised the quality of physical elements offish habitat in low‐order spawning and rearing streams. In order to identify where priorities should lie in stream rehabilitation, field surveys of a number of streams were conducted near Vancouver, British Columbia. All of the streams were located in watersheds which were urbanized approximately 20 years earlier. The study watersheds ranged from 5 to 77 percent total impervious area (percent TIA). The urban streambeds were found to have less fine material and slightly higher values of intragravel dissolved oxygen than in rural streams. This improved gravel quality is attributed to the higher peak flows generated by impervious areas, and the reduced recruitment of fine material in the urban watersheds. Summer base flow was uniformly low when imperviousness was above 40 percent, evidenced by a decrease in velocity rather than water depth. Large woody debris (LWD) was scarce in all streams with > 20 percent TIA. A healthy buffer zone and abundant LWD were found to stabilize stream banks. The introduction of LWD is considered the most important strategy for stream rehabilitation. Stormwater detention ponds, in contrast, are concluded to have few hydrological benefits if constructed after a stream has reached its urban equilibrium.  相似文献   

9.
    
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

10.
    
ABSTRACT: This paper presents the results of a study on the use of continuous stage data to describe the relation between urban development and three aspects of hydrologic condition that are thought to influence stream ecosystems—overall stage variability, stream flashiness, and the duration of extreme‐stage conditions. This relation is examined using data from more than 70 watersheds in three contrasting environmental settings—the humid Northeast (the metropolitan Boston, Massachusetts, area); the very humid Southeast (the metropolitan Birmingham, Alabama, area); and the semiarid West (the metropolitan Salt Lake City, Utah, area). Results from the Birmingham and Boston studies provide evidence linking increased urbanization with stream flashiness. Fragmentation of developed land cover patches appears to ameliorate the effects of urbanization on overall variability and flashiness. There was less success in relating urbanization and streamflow conditions in the Salt Lake City study. A related investigation of six North Carolina sites with long term discharge and stage data indicated that hydrologic condition metrics developed using continuous stage data are comparable to flow based metrics, particularly for stream flashiness measures.  相似文献   

11.
人工湿地除磷技术   总被引:14,自引:0,他引:14  
夏宏生  汤兵 《四川环境》2005,24(1):83-86,123
人工湿地除磷技术,是近几年才发展起来的一种廉价有效的除磷新技术,可作为传统的污水除磷技术的有效替代方案,越来越受到各国的普遍重视和关注。在分析中,介绍了人工显地除磷的工作原理,详细叙述了人工湿地除磷技术的发展,并分析了其应用前景。  相似文献   

12.
ABSTRACT:  In 2001, the 1.04‐ha Hornbaker wetland in south‐central Pennsylvania was restored by blocking an artificial drainage ditch to increase water storage and hydraulic retention time (HRT). A primary goal was to diminish downstream delivery of nitrate that enters the wetland from a limestone spring, its main source of inflow. Wetland inflow and outflow were monitored weekly for two years to assess nitrate flux, water temperature, pH, and specific conductivity. In Year 2, spring discharge was measured weekly to allow calculation of nitrate loads and hydraulic retention time. Surface runoff was confirmed to be a small fraction of wetland inflows via rainfall‐runoff modeling with TR‐55. The full dataset (n = 102) was screened to remove 13 weeks in which spring discharge constituted < 85% of total inflows because of high precipitation and surface runoff. Over two years (n = 89), mean nitrate‐nitrogen concentrations were 7.89 mg/l in inflow and 3.68 mg/l in outflow, with a mean nitrate removal of 4.19 mg/l. During Year 2 (n = 47), for which nitrate load data were available, the wetland removed an average of 2.32 kg N/day, 65% of the load. Nitrate removal was significantly correlated with HRT, water temperature, and the concentration of nitrate in inflow and was significantly greater during the growing season (5.36 mg/l, 64%) than during the non‐growing season (3.23 mg/l, 43%). This study indicates that hydrologic restoration of formerly drained wetlands can provide substantial water quality benefits and that the hydrologic characteristics of spring‐fed wetlands, in particular, support effective nitrogen removal.  相似文献   

13.
    
ABSTRACT: Few hydrological models are applicable to pine flat-woods which are a mosaic of pine plantations and cypress swamps. Unique features of this system include ephemeral sheet flow, shallow dynamic ground water table, high rainfall and evapotranspiration, and high infiltration rates. A FLATWOODS model has been developed specifically for the cypress wetland-pine upland landscape by integrating a 2-D ground water model, a Variable-Source-Area (VAS)-based surface flow model, an evapotranspiration (ET) model, and an unsaturated water flow model. The FLATWOODS model utilizes a distributed approach by dividing the entire simulation domain into regular cells. It has the capability to continuously simulate the daily values of ground water table depth, ET, and soil moisture content distributions in a watershed. The model has been calibrated and validated with a 15-year runoff and a four-year ground water table data set from two different pine flat woods research watersheds in northern Florida. This model may be used for predicting hydrologic impacts of different forest management practices in the coastal regions.  相似文献   

14.
    
The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980s compilation of nutrient export (load) data from cultivated and pasture/range land at the field or farm scale. Then in 2008, MANAGE was updated with 15 additional studies, and nitrogen (N) and phosphorus (P) concentrations in runoff were added. Since then, MANAGE has undergone significant expansion adding N and P water quality along with relevant management and site characteristic data from: (1) 30 runoff studies from forested land uses, (2) 91 drainage water quality studies from drained land, and (3) 12 additional runoff studies from cultivated and pasture/range land uses. In this expansion, an application timing category was added to the existing fertilizer data categories (rate, placement, formulation) to facilitate analysis of 4R Nutrient Stewardship, which emphasizes right fertilizer source, rate, time, and place. In addition, crop yield and N and P uptake data were added, although this information was only available for 21 and 7% of studies, respectively. Inclusion of these additional data from cultivated, pasture/range, and forest land uses as well as artificially drained agricultural land should facilitate expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques. The current version is available at www.ars.usda.gov/spa/manage-nutrient .  相似文献   

15.
    
Abstract: Use of lawn chemicals in residential areas may contribute nonpoint source (NPS) pollutants, such as nutrients, pesticides, and herbicides to streams. We conducted a 2‐year screening study of discharge in stormwater pipes in the Wissahickon Valley Watershed (suburban Philadelphia) using nitrogen as an indicator of lawn chemical use. Stormwater samples representing first flush and composite runoff were collected approximately twice a month using automatic samplers triggered by rise in water level during storms. The runoff collected by the stormpipes was from neighborhoods with 15‐100 residences, and from 2 to 18 ha (5‐45 acres). Several factors were examined to evaluate the effects on nitrate concentration. These factors included time of sampling (season), number of homes, total area, size of the storm, and time since last storm. Nitrate levels were generally less than 5 mg/l, but still above background in typical undeveloped areas. Concentrations were slightly higher in the first summer than during a drought in the second year, but the difference was not statistically significant. There was a positive correlation between size of the neighborhood (capture area) and peak concentration of nitrate. Storm characteristics (size of storm and time since last storm) did not correlate with nitrate concentrations. The variation in both space and time suggests that a more local control may be a factor. Although individual lawn chemical applications were not monitored, they may influence the timing of increased loading. Furthermore, the variability indicates that quarterly monitoring will not capture discharge characteristics of storm basins.  相似文献   

16.
    
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change.  相似文献   

17.
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E.  相似文献   

18.
    
ABSTRACT: Throughout western North America, willows and cottonwoods are dominant woody plants in riparian zones, streamside areas that are periodically flooded. This study compared tolerances of willows‐Salix discolor, S. exigua, and S. lutea‐and cottonwoods‐Populus angustifolia, P balsamifera, and P deltoides‐to water inundation, one component of stream flooding. Rooted cuttings were grown for 152 days in 10 cm tall pots in water depths from 2.5 to 10 cm (inundated). Shoot and root elongation growth of the inundated cottonwoods were reduced 23 and 45 percent, while S. lutea was relatively unaffected and the inundated sandbar willow, S. exigua, displayed 72 and 43 percent increases in shoot and root elongation. The inundation reduced transpiration in P deltoides and for mature P balsamifera trees that were flooded by a small reservoir on Willow Creek, Alberta. Those flooded trees died in their second year of inundation. The greater inundation tolerance of willows versus cottonwoods is consistent with observations along Midvale Creek, Montana, where beaver dams created a pond in which P trichocarpa died while willows thrived after five years. These patterns of inundation tolerance are consistent with elevational zones of occurrence as willows‐and particularly the sandbar willow—occur at low elevations close to the stream. The understanding of inundation tolerances should assist in the provision of hydrologic patterns that will conserve and restore these shrubs and trees along streams and could permit their establishment along artificial reservoirs.  相似文献   

19.
    
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

20.
ABSTRACT: Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm?3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号