共查询到20条相似文献,搜索用时 15 毫秒
1.
Leroy F Heitz Shahram Khosrowpanah Jay Nelson 《Journal of the American Water Resources Association》2000,36(3):541-548
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments. 相似文献
2.
Jurgen D. Garbrecht Jeanne M. Schneider Michael W. Van Liew 《Journal of the American Water Resources Association》2006,42(5):1285-1295
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments. 相似文献
3.
4.
Douglas S. Cherkauer 《Journal of the American Water Resources Association》1975,11(5):987-998
ABSTRACT: The impact of various urban land uses on water flow and quality in streams is being studied by monitoring small streams in the Milwaukee urban area. This paper compares the responses of an urban watershed and an agricultural watershed to an autumn rainfall of 2.2 cm. Flow from the urban basin showed a substantially greater response to the rain than that from the rural. Dilution, resulting from the greater quantities of surface runoff in the urban watershed, caused lower concentrations of sodium, chloride, calcium, magnesium, bicarbonate and total dissolved solids in the urban stream. The total quantity of these materials removed per unit drainage area of the urban basin was much greater, however. Road salt was still among the dominant dissolved materials in the urban water chemistry seven months after the last road salting. Sodium was apparently being released from adsorption by clays in the urban basin. Suspended sediment concentrations and total loads were higher in the urban stream. 相似文献
5.
Franois Anctil Charles Perrin Vazken Andrassian 《Journal of the American Water Resources Association》2003,39(5):1269-1279
ABSTRACT: Artificial neural networks (ANNs) are tested for the output updating of one‐day‐ahead and three‐day‐ahead streamflow forecasts derived from three lumped conceptual rainfall/runoff (R‐R) models: the GR4J, the IHAC, and the TOPMO. ANN output updating proved superior to a parameter updating scheme and to the ‘simple’ output updating scheme, which always replicates the last observed forecast error. In fact, ANN output updating was able to compensate for large differences in the initial performance of the three tested lumped conceptual R‐R models, which the other tested updating approaches were not able to achieve. This is done mainly by incorporating input vectors usually exploited for ANN R‐R modeling such as previous rainfall and streamflow observations, in addition to the previous observed error. For one‐day‐ahead forecasts, the performance of all three lumped conceptual R‐R models, used in conjunction with ANN output updating, was equivalent to that of the ANN R‐R model. For three‐day‐ahead forecasts, the performance of the ANN‐output‐updated conceptual models was even superior to that of the ANN R‐R model, revealing that the conceptual models are probably performing some tasks that the ANN R‐R model cannot map. However, further testing is needed to substantiate the last statement. 相似文献
6.
John M. Pilgrim Xing Fang Heinz G. Stefan 《Journal of the American Water Resources Association》1998,34(5):1109-1121
ABSTRACT: Air temperatures are sometimes used as easy substitutes for stream temperatures. To examine the errors associated with this substitution, linear relationships between 39 Minnesota stream water temperature records and associated air temperature records were analyzed. From the lumped data set (38,082 daily data pairs), equations were derived for daily, weekly, monthly, and annual mean temperatures. Standard deviations between all measured and predicted water temperatures were 3.5°C (daily), 2.6°C (weekly), 1.9°C (monthly), and 1.3°C (annual). Separate analyses for each stream gaging station gave substantially lower standard deviations. Weather monitoring stations were, on average, 37.5 km from the stream. The measured water temperatures follow the annual air temperature cycle closely. No time lags were taken into account, and periods of ice cover were excluded from the analysis. If atmospheric CO2 doubles in the future, air temperatures in Minnesota are projected (CCC GCM) to rise by 4.3°C in the warm season (April-October). This would translate into an average 4.1°C stream temperature rise, provided that stream shading would remain unaltered. 相似文献
7.
Ronald A. Chadderton 《Journal of the American Water Resources Association》1979,15(4):1159-1167
ABSTRACT: Three methods of modeling acid mine drainage effects are discussed. A net alkalinity routing model is the simplest of these, but can be potentially misleading. It typically overestimates the effect of acid sources on pH by neglecting carbon dioxide transfer to the atmosphere. Inclusion of a simple carbon dioxide transfer function can substantially reduce errors in stream quality prediction. A plug flow reaeration equation, coupled with mass balancing at mixing points in a stream network provides modeling results comparable to those of more complex computerized solutions of chemical equilibrium equations. None of the models accounts for carbonate dissolution or oxidation and hydrolysis of ferrous iron. 相似文献
8.
R. Edward Beighley John M. Melack Thomas Dunne 《Journal of the American Water Resources Association》2003,39(6):1419-1433
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern. 相似文献
9.
Heinz G. Stefan Eric B. Preud'homme 《Journal of the American Water Resources Association》1993,29(1):27-45
ABSTRACT: Air temperatures are sometimes used as substitutes for stream temperatures. To examine the errors associated with this procedure, linear relationships between stream temperatures, T, and air temperatures, Ta, recorded for 11 streams in the central U.S. (Mississippi River basin) were analyzed. Weather stations were an average 42 miles (range 0 to 144 miles) from the rivers. The general equations, Tw= 5.0 + 0.75 Ta and Tw= 2.9 + 0.86 Ta with temperatures in °C, were derived for daily and weekly water temperatures, respectively, for the 11 streams studied. The simulations had a standard deviation between measurements and predictions of 2.7°C (daily) and 2.1°C (weekly). Equations derived for each specific stream individually gave lower standard deviations, i.e., 2.1°C and 1.4°C, respectively. Small, shallow streams had smaller deviations than large, deep rivers. The measured water temperatures follow the air temperatures closely with some time lag. time lags ranged from hours to days, increasing with stream depth. Taking into account these time lags improved the daily temperature predictions slightly. Periods of ice cover were excluded from the analysis. 相似文献
10.
ABSTRACT: Rainfall is a significant source of some constituents, particularly nitrogen species, in storm runoff from urban catchments. Median contributions of rainfall to storm runoff loads of 12 constituents from 31 urban catchments, representing eight geographic locations within the United States, ranged from 2 percent for suspended solids to 74 percent for total nitrite plus nitrate nitrogen. The median contribution of total nitrogen in rainfall to runoff loads was 41 percent. Median contributions of total-recoverable lead in rainfall to runoff loads varied by as much as an order of magnitude between catchments in the same geographic location. This indicates that average estimates of rainfall contributions to constituent loading in storm runoff may not be suitable in studies requiring accurate constituent mass-balance computations. 相似文献
11.
Joseph L. Ebersole William J. Liss Christopher A. Frissell 《Journal of the American Water Resources Association》2003,39(2):355-368
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches. 相似文献
12.
Kristan Cockerill William P. Anderson Jr. F. Claire Harris Kelli Straka 《Journal of the American Water Resources Association》2017,53(3):707-724
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts. 相似文献
13.
Brian S. Caruso Brian Newman Thomas Econopouly 《Journal of the American Water Resources Association》2019,55(3):622-640
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection. 相似文献
14.
Tirusew Asefa 《Journal of the American Water Resources Association》2009,45(5):1155-1163
Abstract: While training a Neural Network to model a rainfall‐runoff process, generally two aspects are considered: its capability to be able to describe the complex nature of the processes being modeled and the ability to generalize so that novel samples could be mapped correctly. The general conclusion is that, the smallest size network capable of representing the sample distribution is the best choice, as far as generalization is concerned. Oftentimes input variables are selected a priori in what is called an explanatory data analysis stage and are not part of the actual network training and testing procedures. When they are, the final model will have only a “fixed” type of inputs, lag‐space, and/or network structure. If one of these constituents was to change, one would obtain another equally “optimal” Neural Network. Following Beven and others' generalized likelihood uncertainty estimate approach, a methodology is introduced here that accounts for uncertainties in network structures, types of inputs, and their lag‐space relationships by looking at a population of Neural Networks rather than target in getting a single “optimal” network. It is shown that there is a wide array of networks that provide “similar” results, as seen by a likelihood measure, for different types of inputs, lag‐space, and network size combinations. These equally optimal networks expose the range of uncertainty in streamflow predictions and their expected value results in a better performance than any of the single network predictions. 相似文献
15.
ABSTRACT: Much has been written about the linear relationship in log space between the runoff volume of a hydrograph and the peak discharge. Three versions of this relation (an original and two standardizations) have been presented and recommended by various authors. In this paper, the standardized equations are compared to the original relationship and the behavior of the coefficient of determination (r2) in each case is discussed. It is shown that the r2 of the standardized equations is increased or decreased relative to that of the original relation based upon the magnitude of the original slope. Further implications of these relationships are discussed and demonstrated using a data base of 90 watersheds and over 1,200 separate flood hydrographs. 相似文献
16.
ABSTRACT: A diffusive tank model has been successfully applied to the simulation of runoff from paddy fields in Japan because it can well describe the features of local water flows. The main goal of the study is to evaluate the performance of the diffusive tank model with the calibrated parameters obtained in Jyau‐Shi to simulate discharge from paddy fields in two experimental catchments located in the areas of Shing‐Ying and Ta‐Liao, Southwestern Taiwan. The simulations were verified by comparing the model results with observed runoff data from the two experimental catchments. The model predicted the discharge from the paddy fields well. This indicates that the model with the calibrated parameters may be used in other paddy fields in Taiwan. 相似文献
17.
Shie‐Yui Liong Tirtha Raj Gautam Soon Thiam Khu Vladan Babovic Maarten Keijzer Nitin Muttil 《Journal of the American Water Resources Association》2002,38(3):705-718
ABSTRACT: Genetic Programming (GP) is a domain‐independent evolutionary programming technique that evolves computer programs to solve, or approximately solve, problems. To verify GP's capability, a simple example with known relation in the area of symbolic regression, is considered first. GP is then utilized as a flow forecasting tool. A catchment in Singapore with a drainage area of about 6 km2 is considered in this study. Six storms of different intensities and durations are used to train GP and then verify the trained GP. Analysis of the GP induced rainfall and runoff relationship shows that the cause and effect relationship between rainfall and runoff is consistent with the hydrologic process. The result shows that the runoff prediction accuracy of symbolic regression based models, measured in terms of root mean square error and correlation coefficient, is reasonably high. Thus, GP induced rainfall runoff relationships can be a viable alternative to traditional rainfall runoff models. 相似文献
18.
Luis A. Caballero Alon Rimmer Zachary M. Easton Tammo S. Steenhuis 《Journal of the American Water Resources Association》2012,48(5):1022-1031
Caballero, Luis A., Alon Rimmer, Zachary M. Easton, and Tammo S. Steenhuis, 2012. Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering. Journal of the American Water Resources Association (JAWRA) 48(5): 1022‐1031. DOI: 10.1111/j.1752‐1688.2012.00668.x Abstract: Understanding the basic relationships between rainfall and runoff is vital for effective management and utilization of scarce water resources. Especially, this is important in Central America with widespread potable water shortage during the dry months of the monsoon. Potential good water sources are cloud forests, but little information concerning its potential is available to water supply engineers. Our objective is to define rainfall‐runoff‐base flow relationships for a cloud forest catchment. Flumes were installed for measuring river flow in four subwatersheds in La Tigra National Park, Honduras. One of the four watersheds was a 636‐ha subwatershed (WS1) with 60% cloud forest coverage. Precipitation averaged 1,130 mm/yr over the entire basin. About half of the total rainfall became runoff for the cloud forest watershed whereas, for the adjacent undisturbed forested watershed, the total discharge was <20% of the amount of precipitation. Infiltration rates were generally greater than rainfall rates. Therefore, most rainfall infiltrated into the soil, especially in the upper, steep, and well‐drained portions of the watershed. Direct runoff was generated from saturated areas near the river and exposed bedrock. This research provides compelling evidence that base flow is the primary contributor to streamflow during both wet and dry seasons in cloud forest catchments. Protecting these flow processes over time is critical for the sustained provision of potable water. 相似文献
19.
William Whipple Joseph V. Hunter 《Journal of the American Water Resources Association》1979,15(4):1096-1105
ABSTRACT: Estimates were made of petroleum hydrocarbon pollution loadings reaching the Delaware Estuary by determining storm event loadings of hydrocarbons from four storm sewers, draining areas of different land uses. Although refinery effluents constituted the largest source of petroleum pollution in 1975, it appears that after completion of currently required treatment processes urban runoff will be the largest remaining source of petroleum pollution. The petroleum in urban runoff resembles used crankcase oil in composition and contains toxic chemicals such as polynuclear hydrocarbons. Further research is clearly desirable. Remedial programs to control such pollution may be warranted on the basis of information now available. 相似文献
20.
Christopher C. Obropta Josef S. Kardos 《Journal of the American Water Resources Association》2007,43(6):1508-1523
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling. 相似文献