首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

2.
ABSTRACT: The conspicuous shifts in summertime values of common measures of water qualify that have persisted for 10 years (1993 to 2002) in the Seneca River, New York, as a result of the zebra mussel invasion are documented. Resolution of patterns in time and space is supported by water quality monitoring that extends back to the late 1970s. Patterns are evaluated to describe the stability of impacts and quantify metabolic activity of the invader. The water quality impacts that have persisted unabated for 10 years since the invasion are the most severe documented for a river in North America. Changes in summer median conditions since the invasion include: (1) a 16‐fold decrease in chlorophyll concentration (Chi), (2) a 2.5‐fold increase in Secchi disc transparency, (3) a 17‐fold increase in soluble reactive phosphorus concentration, (4) a 3.7‐fold increase in total ammonia concentration, (5) a greater than 25 percent decrease in dissolved oxygen (DO) concentration, and (6) a decrease in pH of 0.55 units. The strength of these signatures has been driven by anthropogenic influences that include upstream nutrient loading and morphometric modifications of the river, and the functioning of Cross Lake, through which the river flows. This hypereutrophic lake sustains dense zebra mussel populations and related water quality impacts in the river downstream of the lake outflow by acting as a source of veligers and suitable food for this bivalve. Evidence is presented that levels of metabolic activity of the zebra mussel in this river have been resource limited, manifested through increased consumption of Chl and DO with increased delivery of these constituents in the lake's outflow.  相似文献   

3.
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water‐quality data showed higher turbidity and specific conductance in the reaches with low‐quality mussel assemblages compared to reaches with high‐quality mussel assemblages. Discrete water‐quality samples showed higher major ions and metals concentrations in the low‐quality reach. Base‐flow samples contained high major ion and metal concentrations coincident to low‐quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high‐quality mussel populations occur.  相似文献   

4.
The Clinch River is located in northeastern Tennessee (TN) and southwestern Virginia (VA) of the United States, and contains a diverse mussel assemblage of 46 extant species, including 20 species listed as federally endangered. To facilitate quantitative monitoring of the fauna, quadrat data were collected from 2004 to 2009 at 18 sites in the river, including 12 sites in TN and 6 sites in VA. Thirty‐eight mussel species were collected alive in total from quadrat samples taken annually at sites in the TN section of the river. Over the five‐year study period, mussel density averaged 25.5 m?2 at all sites sampled in TN. In contrast, mussel density averaged only 3.1 m?2 at sites sampled in VA. The best historical site in VA was Pendleton Island in Scott County, where mussel density was estimated as high as 25 m?2 in 1979, comparable to current densities recorded in TN. Mussel densities are now <1 m?2, indicating a collapse of the fauna. A severe reduction in mussel abundance has occurred in a 68‐km section of the river from St. Paul, VA, downstream to approximately Clinchport, VA (river kilometers 411.5‐343.3). While the environmental factors responsible for the faunal decline are largely unknown, they must have been severe and sustained to reduce such large populations to their current low levels. Long‐term water and habitat quality monitoring is needed to determine whether environmental degradation is still occurring in the river.  相似文献   

5.
Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working.  相似文献   

6.
ABSTRACT: The Pawtuxet River flows from a relatively rural area through some of the more highly industrialized sections of Rhode Island. During its journey, the river receives many municipal, industrial, and ground water sources of metal constituents. The present report is the first in a two part series in which the water quality of this urban river was evaluated by a chemical monitoring study of the sources, transport mechanisms, and fate of cadmium, chromium, copper, lead, and nickel in the river. The second paper will use the chemical data to derive and calibrate a steady-state water quality model for this river. The metal concentrations In the river tended to increase from the headwaters to the mouth with river stations nearest to point source outfalls showing elevated values. In some sections of the river, levels of a few of the metals could not be explained by the point sources; and other inputs, including sediment resuspension, axe proposed to make up this apparent unbalance. The ability of a municipal secondary treatment plant to remove metals was demonstrated, and the tie-in of the effluent from a major chemical company to the plant did not cause any observable deterioration in treatment efficiency.  相似文献   

7.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

8.
高原 《四川环境》2012,(4):87-89
本文通过多年滇池底泥的采样监测数据,采用地积累指数法和对数衰减模型评估滇池的底泥质量状况,希望摸清底泥中重金属污染状况,并分析评价其对水生生物的风险,为底泥疏浚、截污护岸的滇池治理工程提供一定的科学依据。研究表明:以地积累指数法评价,(1)滇池监测断面底泥质量呈现轻度污染,镉出现一定程度富集,汞在个别监测断面也出现富集情况;(2)6种重金属污染排序为镉>汞>铅>铜>铬>砷;(3)从监测断面来看,海口西污染程度较重,滇池南底泥质量较好。采用对数衰减模型评价,(1)滇池监测断面沉积物重金属污染存在潜在生物风险,应引起重视;(2)从产生可以观察到毒性效果的可能性大小看,6种重金属潜在危害可能性排序为砷>铅>铜>铬>镉>汞;(3)从监测断面来看,白鱼口和观音山中潜在危害可能性大。从富集污染程度分析,海口西监测断面的底泥污染最重,可考虑在海口西监测断面附近进行一定的底泥疏浚工程。从而达到治标治本的目的。滇池监测断面沉积物重金属污染存在潜在生物风险,应引起重视,但在可控范围。  相似文献   

9.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

10.
Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.  相似文献   

11.
Sectorial approach for monitoring heavy metal pollution in rivers has failed to report realistic pollution status and associated ecological and human health risks. The increasing spread of heavy metals from different sources and emerging risks to human and environmental health call for reexamining heavy metal pollution monitoring frameworks. Also, the sources, spread, and load of heavy metals in the environment have changed significantly over time, requiring consequent modification in the monitoring frameworks. Therefore, studies on heavy metal monitoring in rivers conducted in the last decade were evaluated for experimental designs, research frameworks, and data presentations. Most studies (∼99%) (i) lacked inclusiveness of all environmental compartments; (ii) focused on “one pollutant – one/two compartment” or sometimes “one pollutant – one compartment – one effect” approach; and (iii) remained “data-rich but information poor.” An ecological approach with integrative system thinking is proposed to develop a holistic approach for monitoring river pollution. It is visualized that heavy metal monitoring, risk analyses, and water management must incorporate tracking pollutants in different environmental compartments of a river (water, sediment, and floodplain/bank soil) and consider correlating it with riverbank land use. The systems-based pollution monitoring and assessment studies will reveal the critical factors that drive heavy metals pollutant movement in ecosystems and associated potential risks to the environment, wildlife, and humans. Also, water quality and pollution indexing tools would help better communicate complex pollution data and associated risks among all stakeholders. Therefore, integrating systems approaches in scientific- and policy-based tools would help sustainably manage the health of rivers, wildlife, and humans.  相似文献   

12.
Flood and water shortage are two of the leading environmental problems around the world, and among the causes of the problems is sedimentation. The Yellow River brought disastrous floods in its lower reaches in Chinese history. Today, although floods caused by the river are still a formidable hazard hanging over China, it cannot provide the lower reaches with enough usable water. The ineradicable flood hazard and newly emerged water shortage problems of the river are proved to be closely associated with its immense sediment load. The over loaded flow of the river can quickly fill the reservoirs and unceasingly raise the riverbed, attenuating the capacity of reservoirs to suppress floods and provide more water for dry seasons and of river channels to convey floods. Also, the high sediment content pollutes the water and reduces the volume of usable water. In virtue of the intimate linkage between these problems and the formidable sediment load in the river, the solution to these problems should be based on sedimentation management. After reviewing the defects and merits of management measures implemented and proposed, a management scenario composed of multiple measures are recommended. Beside of persistent soil conservation to reduce the huge sediment load, more reservoirs to check sediment and regulate river flows, approaches to alleviating riverbed accretion, interbasin water transfer to mitigate water deficiency, and so on, an emphasis should be laid on use of muddy flows in order to scatter the sediment in a vast area, which was a natural process but has been interrupted by construction of embankments.  相似文献   

13.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

14.
为弄清大渡河流域电站建设对虎嘉鱼等5种保护鱼类的影响情况,探索适宜的保护措施,在流域枯水和丰水期分别选择了电站建设上下游6个有代表性的断面采集水样,采用电感耦合等离子发射光谱法等方法测定了重金属元素等16个指标,用单因子和综合指数评价法对电站上下游水质进行了对比评价;采用实地调查的方法调查了5种保护鱼类在近10年间种群数量的变化趋势。结果表明:电站建设对水质综合影响指数在1.64—1.82之间,影响严重;5种保护鱼类种群数量近10年间急剧下降,目前已为未见或罕见。  相似文献   

15.
The Khorezm region is located in the northwest of Uzbekistan, approximately 350 km from the current shore of the Aral Sea. It comprises a large‐scale irrigation system that conveys water from the river Amu Darya to agricultural land cropped mainly with cotton, wheat, and rice. Khorezm's water resources are vulnerable as they depend on upstream developments and are indispensable to rural livelihoods and state budgets. Since water scarcity is expected to increase in the future, sustainable water management is a necessity. Hence, the objectives of the paper are to: (1) conceptualize the distinctive features of water management in Khorezm; (2) provide an integrated analysis of water management by establishing linkages between society, technical infrastructure, and the bio‐physical environment; and (3) make policy and technology recommendations for improved water management. To conceptualize water management in Khorezm, the paper distinguishes three types of practices: formal practices, strategic practices, and discursive practices. Based on these, it presents an analysis of water management on the state water management level, the water user association level, and the farmer and field level. For each level, recommendations are given. The paper concludes that elements of integrated water resources management (IWRM) such as transparency, accountability, participation, and technical efficiency are relevant to improve water management in Khorezm, as elsewhere. In addition, it underlines the need to create legal space for agency and innovation. Technical tools such as models are increasingly important for facilitating transparency and enabling agents to access and make use of information across the management hierarchy.  相似文献   

16.
Sediment mantling the floor of Sydney estuary contains a wide range of chemicals at highly elevated concentrations over extensive areas. Appropriate sediment management decisions are urgently required to prevent further degradation of sediment quality and to minimize resulting adverse ecological effects. The objective of the present work was to provide a systematic, estuary-wide assessment of sediment risk and ecological/conservation value throughout the harbor to guide sediment management decisions. Sediment risk is the likelihood of sediment chemistry causing adverse biological effects to bottom-dwelling animals and was conducted using national sediment quality guidelines (SQGs) for single contaminants and the mean SQG quotient approach to assess chemical mixtures. Sediment risk was negligible at the mouth of the estuary, but increased strongly landwards. The ecological/conservation value assessment was conducted to identify sites that warrant different levels of protection and was conducted using the value of ecological communities and priority waterway use. Consideration of these two parameters combined enabled the estuary to be prioritized for management attention. The prioritization and identification of appropriate management strategies were determined through the use of management matrices also based on sediment risk and ecological/conservation value. A computer package is being developed to provide managers with information on sediment risk, ecological/conservation value, the urgency and the type of management intervention required for any location in Sydney estuary, in real-time. This approach to estuarine management is unique and will greatly improve effective management of Sydney estuary, and other harbors in urgent need of management action and protection.  相似文献   

17.
ABSTRACT: Effects of the 1993 flood on river water and sediment quality were investigated using historical data and data collected from the Illinois River and Upper Mississippi River in a post‐flood period. Overall the post‐flood results showed systematic reductions and individual changes in the water and sediment constituents. The reductions in sediment metals and nutrients were most obvious at the Keokuk and Lock and Dam 26 stations. By analyzing and comparing the physical changes to the changes in water and sediment constituents at each station, it was found that physical processes such as sediment entrainment and, more importantly, the removal of fine sediment to be the main causes for the reduced concentrations in sediment constituents. On the other hand, sediment redistribution and associated secondary contamination could have caused the emergence of several water and sediment constituents that were undetected before the flood.  相似文献   

18.
Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.  相似文献   

19.
Investigation of the water quality of the Ubu river has been carried out. The upstream course of the river is slightly acidic (pH 5.45 ± 0.23), and the acidity decreases along the lower courses of the river. Turbidity, surfactant, and iron content parameters of the river increased during the wet season, and these changes have been attributed to inputs from flood, leachates of soil erosion, and storm water runoff discharged into the river in increased quantities during the season. Concentrations of some metals were found to increase during the dry season because of absence of dilution of the river by storm water runoff. Most water quality parameters are within World Health Organization acceptable limits set for potable water, and they include most of the cationic and anionic constituents. Although there is no hydrocarbon or metal ion pollution, potability is reduced along the mid to downstream courses of the river by unacceptable levels of turbidity, surfactant concentration, and iron content, particularly during the wet season.  相似文献   

20.
Abstract: Effects of agricultural intensification and a naturally occurring landslide of asbestos material upon water and sediment quality in a transboundary watershed were investigated. The water and sediments of the Sumas River watershed were analyzed for copper (Cu), zinc (Zn), chromium (Cr), and nickel (Ni) concentrations in 1993/1994 and 2003/2004 and differences within sites over time were examined. Based upon a review of the literature, Cu and Zn were used as indicators of agricultural impacts while Cr and Ni were used as indicators of impacts from an asbestos landslide. Animal unit equivalents (AUEs) were calculated on a per area basis as an indicator of livestock density using detailed statistical census data. Whatman #42 filtered metals, bioavailable metals, and sediment‐bound metals (in the <63 μm fraction) were determined at 22 sites along the mainstem and tributaries, including two reference sites. Temperature, pH, and dissolved organic carbon (DOC) were also measured. The bioavailable metal fraction was determined using the diffusive gradient thin film technique (DGT). Sediment‐bound results were compared with British Columbia’s Interim Sediment Quality Guidelines (ISQGs) and Severe Effects Levels (SELs). A Wilcoxon signed rank test was used to determine if the concentrations of metals changed significantly within sites between 1993/1994 and 2003/2004. Spearman rank correlation analysis was used to determine relationships between trace metals, water quality parameters, and AUEs/hectare. The results indicate that Cu and Zn levels in sediments increased significantly to concentrations above the ISQGs of 35.7 mg/kg and 123 mg/kg, respectively from 1993/1994 to 2003/2004 in streams, where associated land use was dominated by intensive agriculture. Higher AUEs/hectare were significantly correlated with greater bioavailable levels of Zn as well as higher sediment‐bound Zn concentrations. Neither Cu nor Cr were detected by the DGTs on any of the sampling occasions. The Cr and Ni sediment concentrations were highest in Swift Creek, the headwater tributary affected by the natural landslide of asbestos material, and decreased in the Sumas River downstream from the point of input. Cr and Ni concentrations have increased in the mid‐region of the Sumas River since 1993/1994, suggesting downstream movement of the asbestos material over time. DGT results indicated that bioavailable Zn is significantly positively correlated to sediment‐bound Zn and livestock density, and bioavailable Ni is significantly correlated to sediment‐bound Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号