首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water quality trading (WQT) has the potential to be a low‐cost means for achieving water quality goals. WQT allows regulated wastewater treatment plants (WWTPs) facing discharge limits the flexibility to either reduce their own discharge or purchase pollution control from other WWTPs or nonpoint sources (NPSs) such as agricultural producers. Under this limited scope, programs with NPSs have been largely unsuccessful at meeting water quality goals. The decision to participate in trading depends on many factors including the pollution control costs, uncertainty in pollution control, and discharge limits. Current research that focuses on making WQT work tends to identify how to increase participation by traditional traders such as WWTPs and agricultural producers. As an alternative, but complementary approach, we consider whether augmenting WQT markets with nontraditional participants would help increase the number of trades. Determining the economic incentives for these potential participants requires the development of novel benefit functions requiring not only economic considerations but also accounting for ecological and engineering processes. Existing literature on nontraditional participants in environmental markets tends to center on air quality and only increasing citizen participation as buyers. Here, we consider the issues for broadening participation (both buyers and sellers) in WQT and outline a multidisciplinary approach to begin evaluating feasibility.  相似文献   

2.
Horan, Richard D. and James S. Shortle, 2011. Economic and Ecological Rules for Water Quality Trading. Journal of the American Water Resources Association (JAWRA) 47(1):59‐69. DOI: 10.1111/j.1752‐1688.2010.00463.x Abstract: Emissions trading in textbook form uses markets to achieve pollution targets cost‐efficiently. This result is accomplished in markets that regulators can implement without knowing pollution abatement costs. The theoretical promise of emissions trading, along with real‐world success stories from air emissions trading, has led to initiatives to use trading for water pollution control. Yet, trading, particularly when it involves nonpoint sources of pollution, requires significant departures from the textbook concept. This paper explores how features of water quality problems affect the design of markets for water pollution control relative to textbook emissions markets. Three fundamental design tasks that regulators must address for pollution trading to achieve an environmental goal at low cost are examined: (1) defining the point and nonpoint commodities to be traded, (2) defining rules governing commodity exchange, and (3) setting caps on the commodity supplies so as to achieve an environmental target. We show that the way in which these tasks are optimally addressed for water quality markets differs significantly from the textbook model and its real‐world analogs. We also show that the fundamental appeal of emissions trading is lost in the case of realistic water quality markets, as market designs that reduce the costs of achieving water quality goals may no longer be implementable without the regulatory authority having information on abatement costs.  相似文献   

3.
Abstract: Market‐like trading programs for water quality management begin with enforceable limits on the amount of the pollutant allowed in a watershed. Properly designed market‐like trading programs then create incentives for dischargers to reduce nutrient control costs over time by making pollution prevention innovations. However, the structure of the Clean Water Act can be a barrier to establishing market‐like trading programs. First, we describe the general features and advantages of market‐like trading programs. Then we offer practical suggestions for bringing market‐like design concepts to nutrient trading programs within the existing legal and regulatory setting.  相似文献   

4.
Stephenson, Kurt and Leonard Shabman, 2011. Rhetoric and Reality of Water Quality Trading and the Potential for Market‐Like Reform. Journal of the American Water Resources Association (JAWRA) 47(1):15‐28. DOI: 10.1111/j.1752‐1688.2010.00492.x Abstract: Many public interest groups, government agencies, and professional economists argue that current approaches to water quality trading are a cost‐effective, politically practical innovation for achieving water quality standards, in part by addressing one of the most difficult water quality improvement challenges – limiting the discharge from nonpoint sources. A critical analysis shows that these claims for current water quality trading programs are often unrealized. This rhetoric, without adherence to principles of market‐like reform, can undermine the support of regulated parties for meaningful water quality policy reform, contribute to missed opportunities to implement cost‐effective programs, and postpone successfully meeting the challenge of limiting nonpoint source discharges. A better understanding and application of market‐like principles can result in an improved design of trading as well as general water quality management programs.  相似文献   

5.
Causes of variation between loads estimated using alternative calculation methods and their repeatability were investigated using 20 years of daily flow and monthly concentration samples for 77 rivers in New Zealand. Loads of dissolved and total nitrogen and phosphorus were calculated using the Ratio, L5, and L7 methods. Estimates of loads and their precision associated with short‐term records of 5, 10, and 15 years were simulated by subsampling. The representativeness of the short‐term loads was quantified as the standard deviation of the 20 realizations. The L7 method generally produced more realistic loads with the highest precision and representativeness. Differences between load estimates were shown to be associated with poor agreement between the data and the underlying model. The best method was shown to depend on the match between the model and functional and distributional characteristics of the data, rather than on the contaminant. Short‐term load estimates poorly represented the long‐term load estimate, and deviations frequently exceeded estimated imprecision. The results highlight there is no single preferred load calculation method, the inadvisability of “unsupervised” load estimation and the importance of inspecting concentration‐flow, unit load‐flow plots and regression residuals. Regulatory authorities should be aware that the precision of loads estimated from monthly data are likely to be “optimistic” with respect to the actual repeatability of load estimates.  相似文献   

6.
Newbold, J. Denis, Susan Herbert, Bernard W. Sweeney, Paul Kiry, and Stephen J. Alberts, 2010. Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System. Journal of the American Water Resources Association (JAWRA) 46(2):299-310. DOI: 10.1111/j.1752-1688.2010.00421.x Abstract: We monitored long-term water quality responses to the implementation of a three-zone Riparian Forest Buffer System (RFBS) in southeastern Pennsylvania. The RFBS, established in 1992 in a 15-ha agricultural (row crop) watershed, consists of: Zone 1, a streamside strip (∼10 m wide) of permanent woody vegetation for stream habitat protection; Zone 2, an 18- to 20-m-wide strip reforested in hardwoods upslope from Zone 2; and Zone 3, a 6- to 10-m-wide grass filter strip in which a level lip spreader was constructed. The monitoring design used paired watersheds supplemented by mass balance estimates of nutrient and sediment removal within the treated watershed. Tree growth was initially delayed by drought and deer damage, but increased after more aggressive deer protection (1.5 m polypropylene shelters or wire mesh protectors) was instituted. Basal tree area increased ∼20-fold between 1998 and 2006, and canopy cover reached 59% in 2006. For streamwater nitrate, the paired watershed comparison was complicated by variations in both the reference stream concentrations and in upslope groundwater nitrate concentrations, but did show that streamwater nitrate concentrations in the RFBS watershed declined relative to the reference stream from 2002 through the end of the study in early 2007. A subsurface nitrate budget yielded an average nitrate removal by the RFBS of 90 kg/ha/year, or 26% of upslope subsurface inputs, for the years 1997 through 2006. There was no evidence from the paired watershed comparison that the RFBS affected streamwater phosphorus concentration. However, groundwater phosphorus did decline within the buffer. Overland flow sampling of 23 storms between 1997 and 2006 showed that total suspended solids concentration in water exiting the RFBS to the stream was on average 43% lower than in water entering the RFBS from the tilled field. Particulate phosphorus concentration was lower by 22%, but this removal was balanced by a 26% increase in soluble reactive phosphorus so that there was no net effect on total phosphorus.  相似文献   

7.
Abstract: This paper presents a procedure for standard application of hydrologic/water quality models. To date, most hydrologic/water quality modeling projects and studies have not utilized formal protocols, but rather have employed ad hoc approaches. The procedure proposed is an adaptation and extension of steps identified from relevant literature including guidance provided by the U.S. Environmental Protection Agency. This protocol provides guidance for establishing written plans prior to conducting modeling efforts. Eleven issues that should be addressed in model application plans were identified and discussed in the context of hydrologic/water quality studies. A graded approach for selection of the level of documentation for each item was suggested. The creation and use of environmental modeling plans is increasingly important as the results of modeling projects are used in decision‐making processes that have significant implications. Standard modeling application protocols similar to the proposed procedure herein provide modelers with a roadmap to be followed, reduces modelers’ bias, enhances the reproducibility of model application studies, and eventually improves acceptance of modeling outcomes.  相似文献   

8.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

9.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

10.
Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.  相似文献   

11.
ABSTRACT: The use of transferable discharge permits in water pollution, what we will call water quality trading (WQT), is rapidly growing in the U.S. This paper reviews the current status of WQT nationally and discusses the structures of the markets that have been formed. Four main structures are observed in such markets: exchanges, bilateral negotiations, clearinghouses, and sole source offsets. The goals of a WQT program are environmental quality and cost effectiveness. In designing a WQT market, policy makers are constrained by legal restrictions and the physical characteristics of the pollution problem. The choices that must be made include how trading will be authorized, monitored and enforced. How these questions are answered will help determine both the extent to which these goals are achieved, and the market structures that can arise. After discussing the characteristics of different market structures, we evaluate how this framework applies in the case of California's Grassland Drainage Area Tradable Loads Program.  相似文献   

12.
ABSTRACT: Wetlands that treat holding pond effluent can be designed to utilize the pond storage capacity to allow flexibility in system management. Management of a wetland as a sequencing batch reactor can simplify operation and control detention times, but little performance data on such systems are available. The objective of this study was to evaluate the batch reactor wetland concept by quantifying removal of chemical oxygen demand (COD), total suspended sediments (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and orthophosphate (PO4) and by assessing the suitability of first‐order kinetics. Weekly samples were collected following batch loadings of wetland cells with high concentration or low concentration dairy holding pond wastewater during both fall and spring seasons. During three‐week batch periods without plants, overall mass removal averaged 54 percent for COD, 58 percent for TSS, 90 percent for TN, 72 percent for NH4, ‐54 percent for NO3, 38 percent for TP, and ‐8 percent for PO4. Best fit, first‐order kinetic rate constant (k) and background concentration (C*) for COD varied by season, with k = 0.024/d and C*= 0 mg/l in fall and k = 0.056/d and C*= 200 mg/l in spring. Ammonium exhibited a consistent C*= 0 mg/l but had variable rate constants of k = 0.121/d for low concentration treatments and k = 0.079/d for high concentration treatments. Using first‐order kinetics was also appropriate for TN, with k = 0.061/d and C*= 0 mg/l for all loadings and seasons, but was not consistently appropriate for TP or PO4. These results support the use of first‐order kinetics to describe treatment in batch reactor wastewater treatment wetlands without vegetation, perhaps during the establishment phase or in open water zones of vegetated wetlands. Further work is needed to assess the effects of vegetation.  相似文献   

13.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

14.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

15.
ABSTRACT: A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the in-stream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.  相似文献   

16.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   

17.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

18.
In this paper we review the published, scientific literature addressing the response of nutrients, sediment, pathogens, and cyanobacterial blooms to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk, to inform management responses, and to identify research needs to fill gaps in our understanding. Results suggest that anticipated future changes present a risk of water quality and ecosystem degradation in many United States locations. Understanding responses is, however, complicated by inherent high spatial and temporal variability, interactions with land use and water management, and dependence on uncertain changes in hydrology in response to future climate. Effects on pollutant loading in different watershed settings generally correlate with projected changes in precipitation and runoff. In all regions, increased heavy precipitation events are likely to drive more episodic pollutant loading to water bodies. The risk of algal blooms could increase due to an expanded seasonal window of warm water temperatures and the potential for episodic increases in nutrient loading. Increased air and water temperatures are also likely to affect the survival of waterborne pathogens. Responding to these challenges requires understanding of vulnerabilities, and management strategies to reduce risk.  相似文献   

19.
ABSTRACT: A synoptic sampling of five surface-water sites in central Nebraska was conducted by the U.S. Geological Survey as part of its National Water-Quality Assessment Program during storm runoff in May 1992 to relate transport, yields, and concentrations of atrazine to environmental setting. Atrazine was the most extensively applied pesticide in the study unit. Atrazine transport was related to the size of contributing drainage area, quantity of atrazine applied, amount of precipitation, and volume of stream-flow. Estimated yields and mean concentrations of atrazine were related to the percentage of cropland in a drainage area. The largest estimated yields and mean concentrations of atrazine in surface water were associated from drainage areas with the highest percentage of cropland, and the smallest was associated with the smallest amount of cropland. Atrazine concentrations increased as streamflow increased but decreased at or near the time of peak streamflows, perhaps due to dilution. Atrazine concentrations then increased and remained elevated far into the stream recession. Atrazine is a regulated contaminant in finished public-water supplies. Large concentrations of atrazine could affect the management of public-water supplies because atrazine remains in solution in contrast to many other pesticides that are more easily removed.  相似文献   

20.
ABSTRACT: The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号