首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand a state's incentives to invest in conflict or cooperation over their international rivers, this paper argues that it is necessary to appreciate the relationships a river can create and the national security threat riparians may confront. Rivers impose interdependent and vulnerable relationships, which can compromise a state's ability to respond effectively to floods and droughts, meet its domestic food and energy needs, dredge the river, maintain its drainage systems, and allocate its domestic water budget. The inability to accomplish these tasks can contribute to social, economic, and political losses that may threaten a state's territorial integrity. Regardless of whether a state is upstream or downstream, from these relationships it acquires leverage to manipulate the interdependence and vulnerability to inflict losses on its riparian neighbour. This argument challenges several assumptions within the existing literature, including the belief that a shortage of freshwater is the initial force producing a national security threat and that an upstream–downstream river bequeaths all advantages on the upstream state and leaves the downstream state purely dependent. As the paper shows, riparians confront a more complex relationship than captured by the existing literature.  相似文献   

2.
    
ABSTRACT: In early 1997, the Texas Edwards Aquifer Authority implemented a pilot Irrigation Suspension Program with the objectives of increasing springflow and providing relief to municipalities during drought. Irrigators were paid an average of $234 per acre to suspend water use, a price higher than regional land rental rates. Auction theory and program implementation details suggest that the program implementation partially caused inflated bids. The Irrigation Suspension Program is also compared to two alternative programs: (1) subsidizing more efficient irrigation technology and (2) buying land. The irrigation suspension is found to be more cost‐effective relative to subsidizing improved irrigation efficiency because it can be put in place only when aquifer levels are low. Land purchase is a cheaper alternative if the bid levels remain at the levels observed.  相似文献   

3.
    
While transboundary waters are widely advocated to be best managed at the basin level, practical experience in transboundary waters at the basin vis‐à‐vis other scales has not been systematically examined. To understand past experiences in transboundary water management at alternate scales, this paper: (i) determines the relative abundance of water treaties at different scales and (ii) elucidates how transboundary water law varies according to the scale to which it applies. The paper developed a scale typology with six groups, and systematically applied it to stratify transboundary water treaties. Treaty contents were then compared across scales according to the following set of parameters: primary issue area, temporal development, and important water management attributes. Results of this work reveal: (i) treaties tend to focus on hydropower and flood control at smaller scales, and organizations and policies at larger scales; (ii) a temporal trend toward treaties concluded at larger scales; and (iii) a higher proportion of treaties is at larger scales in Africa and Asia than in Europe and the Americas. These findings suggest that smaller scale cooperation may constitute a more constructive scale in which to achieve development‐oriented cooperation. Further, scope may exist to complement basin scale cooperation with cooperation at smaller scales, in order to optimize transboundary water management. In the context of basin‐wide management frameworks, Africa and Asia may benefit from greater emphasis on small‐scale transboundary water cooperation.  相似文献   

4.
    
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   

5.
    
Institutional authority and responsibility for allocating water to ecosystems (“ecologically available water” [EAW]) is spread across local, state, and federal agencies, which operate under a range of statutes, mandates, and planning processes. We use a case study of the Upper Missouri Headwaters Basin in southwestern Montana, United States, to illustrate this fragmented institutional landscape. Our goals are to (a) describe the patchwork of agencies and institutional actors whose intersecting authorities and actions influence the EAW in the study basin; (b) describe the range of governance mechanisms these agencies use, including laws, policies, administrative programs, and planning processes; and (c) assess the extent to which the collective governance regime creates gaps in responsibility. We find the water governance regime includes a range of nested mechanisms that in various ways facilitate or hinder the governance of EAW. We conclude the current multilevel governance regime leaves certain aspects of EAW unaddressed and does not adequately account for the interconnections between water in different parts of the ecosystem, creating integrative gaps. We suggest that more intentional and robust coordination could provide a means to address these gaps.  相似文献   

6.
    
Abstract: Water demand in a viable economy tends to be dynamic: it changes over time in response to growth, drought, and social policy. Institutional capacity to re‐allocate water between users and uses under stress from multiple sources is a key concern. Climate change threatens to add to those stresses in snowmelt systems by changing the timing of runoff and possibly increasing the severity and duration of drought. This article examines Snake and Klamath River institutions for their ability to resolve conflict induced by demand growth, drought, and environmental constraints on water use. The study finds that private ownership of water rights has been a major positive factor in successful adaptation, by providing the basis for water marketing and by promoting the use of negotiation and markets rather than politics to resolve water conflict.  相似文献   

7.
    
ABSTRACT: A series of gravel terraces support a shallow aquifer that is the sole source of drinking water for three public water supplies and more than 400 private wells on the Greenfields Bench in west‐central Montana. Farming practices on the Greenfields Bench include irrigation of malting barley and the yearly application of herbicides for the control of weeds. The most commonly used herbicide (imazamethabenz‐methyl, U.S. trade name Assert®) has been found in the ground water on the Greenfields Bench. An experiment was conducted in 2000 and 2001 to characterize the transport of Assert and its acid metabolite to ground water under three irrigation methods: flood, wheel line sprinkler, and center pivot sprinkler. Results show that Assert concentrations in ground water are controlled by hydraulic loading rates of each irrigation method, Assert persistence in soil, hydraulic characteristics of the aquifer, and adsorption/desorption of Assert onto clay particles and organic matter.  相似文献   

8.
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined.  相似文献   

9.
Abstract: While transboundary flood events have become more frequent on a global scale the past two decades, they appear to be overlooked in the international river basin (IRB) cooperation and management arena. The present study therefore combined geopolitical measures with biophysical and socioeconomic variables in an attempt to identify the IRBs with adequate institutional capacity for management of transboundary floods. It also classified basins that would possibly benefit from enlarging the institutional capacity related to transboundary floods. Of the 279 known IRBs, only 78 were represented by a transboundary rivers institution. A mere eight of the 153 identified institutions had transboundary flooding listed as an issue in their mandate. Overall, 43 basins, where transboundary floods were frequent during the period 1985‐2005, had no institutional capacity for IRBs. The average death and displacement tolls were found to be lower in the 37 basins with institutional capacity, even though these basins experienced twice as much transboundary floods with significant higher magnitudes than those in basins without institutional capacity. Overall, the results suggested that institutional capacity plays a role in the reduction of flood‐related casualties and affected individuals. River basins such as the Juba‐Shibeli, Han, Kura‐Araks, Ma, Maritsa, Po, Coco/Segovia, Grijalva, Artibonite, Changuinola, Coatan Achute, and Orinoco experienced more than one transboundary river flood, but have not yet set up any institutions for such events, or signed any appropriate treaties focused on floods. These basins were therefore recommended to consider focusing attention on this apparent lack of institutional capacity when it comes to managing transboundary flood events.  相似文献   

10.
    
ABSTRACT: The Palmer Drought Severity Index, which is intended to be of reasonable comparable local significance both in space and time, has been extensively used as a measure of drought for both agricultural and water resource management. This study examines the spatial comparability of Palmer's (1965) definition of severe and extreme drought. Index values have been computed for 1035 sites with at least 60 years of record that are scattered across the contiguous United States, and quantile values corresponding to a specified index value were calculated for given months and then mapped. The analyses show that severe or extreme droughts, as defined by Palmer (1965), are not spatially comparable in terms of identifying rare events. The wide variation across the country in the frequency of occurrence of Palmer's (1965) extreme droughts reflects the differences in the variability of precipitation, as well as the average amount of precipitation. It is recommended first, that a drought index be developed which considers both variability and averages; and second, that water resource managers and planners define a drought in terms of an index value that corresponds to the expected quantile (return period) of the event.  相似文献   

11.
  总被引:1,自引:0,他引:1  
The increasing availability of multi‐scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model‐assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the “hot” and “cold” reference conditions. The SSEBop model was used for computing ET for 12 years (2000‐2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000‐2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.  相似文献   

12.
ABSTRACT: Although droughts are a frequent occurrence over much of the United States, response by state and federal government has been ineffective and poorly coordinated. Recently, several states have recognized the value of drought emergency planning and have developed plans to assist them in responding more effectively to prolonged periods of water shortage. These states have created an organizational structure to coordinate the assessment and response activities of state and federal agencies. Each state's drought response plan is unique since each state's water supply and management problems, and their consequent impacts, are unique. The drought response plans developed by Colorado, South Dakota and New York are reviewed here in detail. We recommend that other states affected by frequent and severe water shortages also develop drought emergency plans. These plans will enhance state government's ability to implement effective measures in a timely manner and, ultimately, may provide added incentive for the federal government to develop the national drought response plan called for by the General Accounting Office in 1979.  相似文献   

13.
    
This study investigates agricultural adaptation to drought for different cropping systems in southern China. The study area was divided into three regions: South China (SC), South of the Yangtze River (SYR), and Southwest China (SWC). An index of agricultural adaptation to drought (D) was established. Our findings indicated that the average total crop water demand varied greatly among the regions from 1961 to 2010 in southern China. The maximum value was found in the SC region, followed by the SYR and SWC regions. The effects of droughts on different crops were noticeable. Frequent droughts were recorded in late rice than in early rice in the SC and SYR regions. Droughts in the SWC region mainly affected winter wheat. Moreover, the effects of droughts on crops varied during different growth stages. More frequent and serious droughts occurred during the crop critical flowering stage. Particularly, the frequency of moderate and severe droughts for late rice in the SYR region was 62% during the critical flowering stage. For the SC and SYR regions, the D values of early rice (0.29 and 0.29) were lower than that of late rice (0.31 and 0.33), respectively. For the SWC region, the D values of winter wheat and rice were both low, with averages of 0.16 and 0.29, respectively. Our study provides interesting insights for improving the drought defense abilities for different cropping systems by changing crop planting proportion on a regional scale in China.  相似文献   

14.
    
ABSTRACT: Drought conditions in the summer of 2002 prompted several cities along Colorado's Front Range to enact restrictions on outdoor water use, focusing primarily on limiting the frequency of lawn watering. The different approaches utilized by eight water providers were tracked to determine the level of water savings achieved, measured as a comparison of 2002 usage to 2000 to 2001 average usage, and also based on a statistical estimate of 2002 “expected use” that accounts for the impact of drought conditions on demand. Mandatory restrictions were shown to be an effective tool for drought coping. During periods of mandatory restrictions, savings measured in expected use per capita ranged from 18 to 56 percent, compared to just 4 to 12 percent savings during periods of voluntary restrictions. As anticipated, providers with the most stringent restrictions achieved the greatest savings.  相似文献   

15.
ABSTRACT: Examples are drawn from the Indus Basin to explain why on-farm water management problems restrict the output of agricultural products in many LDC's. Data is presented to illustrate the low level of water management knowledge of both the farmers and the current extension agents. Examples of the level of corruption and its effect on the operating system are illustrated. Several requirements that must be met before a large-scale irrigation scheme will actually increase the welfare of LDC's farmers are presented.  相似文献   

16.
    
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

17.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

18.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

19.
    
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   

20.
    
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号