首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Complex relationships between stream functions and processes make evaluation of stream modification projects difficult. Informed by vague objectives and minimal monitoring data, post‐construction project evaluations can often be a subjective attribution of success or failure. This article provides a simple framework to rapidly describe the degree of damage in stream modification projects performed in constrained settings. Based on widely accepted evaluations of physical habitat quality and stream stability, the damage states framework describes a continuum of damage in multiple categories that relate natural stream functions to the often desired state of static equilibrium. Given that channel form is closely related to stream function, it follows that changes to the channel form result in changes in function. The damage states focus on damage to flow hydraulics, sediment transport and channel equilibrium, hydraulic, and geomorphic parameters that describe basic stream functioning and support higher level functions in the modified channel. The damage states can be used in decision making as a systematic method to determine the need for repair and design adjustments.  相似文献   

2.
Visual‐based rapid assessment techniques provide an efficient method for characterizing the restoration potential of streams, with many focusing on channel stability and instream habitat features. Few studies, however, have compared these techniques to see if they result in differing restoration priorities. Three rapid assessment techniques were contrasted at three wild trout streams in western New York with different amounts of channel disturbance. Two methods focused only on geomorphic stability, whereas the third addressed physical habitat condition. Habitat assessment scores were not correlated with scores for either geomorphic assessment method and they varied more between channels with different degrees of disturbance. A model based on dynamic equilibrium concepts best explains the variation among the streams and techniques because it accounts for a stream's capacity to maintain ecological integrity despite some inherent instability. Geomorphic indices can serve as effective proxies for biological indices in highly disturbed systems. Yet, this may not be the case in less disturbed systems, where geomorphic indices cannot differentiate channel adjustments that impact biota from those that do not. Dynamically stable streams can include both stable and unstable reaches locally as characterized by geomorphic methods and translating these results into restoration priorities may not be appropriate if interpretations are limited to the reach scale.  相似文献   

3.
Abstract: The effects of streamflows on temporal variation in stream habitat were analyzed from the data collected 6‐11 years apart at 38 sites across the United States. Multiple linear regression was used to assess the variation in habitat caused by streamflow at the time of sampling and high flows between sampling. In addition to flow variables, the model also contained geomorphic and land use factors. The regression model was statistically significant (p < 0.05; R2 = 0.31‐0.46) for 5 of 14 habitat variables: mean wetted stream depth, mean bankfull depth, mean wetted stream width, coefficient of variation of wetted stream width, and the percent frequency of bank erosion. High flows between samples accounted for about 16% of the total variation in the frequency of bank erosion. Streamflow at the time of sampling was the main source of variation in mean stream depth and contributed to the variation in mean stream width and the frequency of bank erosion. Urban land use (population change) accounted for over 20% of the total variation in mean bankfull depth, 15% of the total variation in the coefficient of variation of stream width, and about 10% of the variation in mean stream width.  相似文献   

4.
Creating False Images: Stream Restoration in an Urban Setting   总被引:1,自引:0,他引:1  
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams.  相似文献   

5.
6.
Continuity and accuracy of near real‐time streamflow gauge (streamgage) data are critical for flood forecasting, assessing imminent risk, and implementing flood mitigation activities. Without these data, decision makers and first responders are limited in their ability to effectively allocate resources, implement evacuations to save lives, and reduce property losses. The Streamflow Hydrology Estimate using Machine Learning (SHEM) is a new predictive model for providing accurate and timely proxy streamflow data for inoperative streamgages. SHEM relies on machine learning (“training”) to process and interpret large volumes (“big data”) of historic complex hydrologic information. Continually updated with real‐time streamflow data, the model constructs a virtual dataset index of correlations and groups (clusters) of relationship correlations between selected streamgages in a watershed and under differing flow conditions. Using these datasets, SHEM interpolates estimated discharge and time data for any indexed streamgage that stops transmitting data. These estimates are continuously tested, scored, and revised using multiple regression analysis processes and methodologies. The SHEM model was tested in Idaho and Washington in four diverse watersheds, and the model's estimates were then compared to the actual recorded data for the same time period. Results from all watersheds revealed a high correlation, validating both the degree of accuracy and reliability of the model.  相似文献   

7.
Regional curves relate drainage area to the bankfull channel characteristics discharge, cross‐sectional area, width, and mean depth. These curves are used for a variety of purposes, including aiding in the field identification of bankfull elevation and in the natural channel design process. When developing regional curves, the degree to which landform, geology, climate, and vegetation influence stream systems within a single physiographic province may not be fully considered. This study examined the use of the U.S. Geological Survey's Hydrologic Landscape Regions (HLR), as well as data from 2,856 independent sites throughout the contiguous United States (U.S.), to develop a set of regional curves (bankfull discharge, cross‐sectional area, width, and mean depth) for (1) the contiguous U.S., (2) each of the 20 HLRs, (3) each of the eight physiographic divisions, (4) 22 of the 25 physiographic provinces, and (5) individual HLRs within the physiographic provinces. These regional curves were then compared to each other, as well as those from the literature. Regional curves developed for individual HLRs, physiographic divisions, and physiographic provinces tended to outperform the contiguous U.S. indicating increased stratification was beneficial. Further stratifying physiographic provinces by HLR markedly improved regional curve reliability. Use of HLR as a basis of regional curve development, rather than physiographic region alone, may allow for the development of more robust regional curves.  相似文献   

8.
Abstract: This is the first in a series of three articles designed to establish empirically defined biological indicators and thresholds for impairment for urbanized catchments, and to describe a process by which the biological condition of waterbodies in urbanized catchments can be applied. This article describes alternative gradients of urbanization for assessing and selecting a nationally applicable biological index (article 2 – Purcell et al., this issue ) and defining the potential of biological communities within a gradient of cumulative stressors (article 3 – Paul et al. this issue ). Gradients were designed to represent the most prominent mosaic of stressors found in urban settings. A primary urban gradient was assembled based on readily obtained information of urbanization to include three broad‐scale parameters: percent urban land use/land cover, population density, and road density. This gradient was used as the standard by which alternative urban gradients, which included fine‐scale instream chemical and hydrologic parameters, were assessed. Five alternative gradients were developed to provide numerous environmental management options based on availability of data from water program resources. The urban gradients were developed with the intent that they be applied throughout the country; therefore, data from three different regions of the United States (Mid‐Atlantic, Midwest, and Pacific Coast) were used to validate the urban gradient model. Our study showed that a relatively straightforward stressor gradient consisting of human population density, road density, and urban land use is useful in providing a framework for developing relevant biological indicators and evaluating the potential of biological communities as a basis for assessing attainment of designated aquatic life use.  相似文献   

9.
Abstract: A combination of long‐term fixed‐frequency and robotic monitoring information for a polluted urban lake, Onondaga Lake, New York, and two of its tributaries is used to resolve the propensity for, and occurrences of, tributary plunging. Cooler temperatures (T) and higher salinity (S) are primarily responsible for the elevated density and plunging of one of these polluted streams for the summer through early fall interval. In‐lake transport of this plunging tributary, which receives inputs from combined sewer overflows (CSOs), is tracked by its high S during dry weather, its high turbidity (Tn) with associated lower S (dilution with rainwater) following runoff events, and by its characteristic ionic composition. These signatures are documented extending from the creek mouth, through a connecting navigation channel, through the inflow zone of the lake, and into metalimnetic depths of pelagic portions of the lake. The entry of this polluted tributary below the depth interval(s) of primary production and contact recreation has important implications for the ongoing major rehabilitation program for this lake. The plunging phenomenon diminishes the benefits previously expected for related features of the lake’s water quality from ongoing management efforts to abate CSO inputs and reduce nonpoint nutrient loading from the tributary. Previously this tributary tended to instead enter the upper layers of the lake during the operation of an adjoining soda ash manufacturing facility (closure in 1986), as a result of high lake S caused by the industry’s ionic waste discharge.  相似文献   

10.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   

11.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

12.
Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m‐ & p‐xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long‐term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one‐half the LTMDL in water. Six compounds (chloroform, p‐isopropyltoluene, methylene chloride, perchloroethene, 1,1,1‐trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m‐ & p‐xylene, methyl tert‐butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.  相似文献   

13.
Urban green/blue spaces are put under pressure as urban areas grow, develop and evolve. It is increasingly recognized, however, that green/blue spaces provide important ecosystem services, stimulate higher real estate prices and prevent flooding problems. This paper aims to assess and compare the socio-economic impacts of potential green/blue space, urban residential and road infrastructure development scenarios in the Lyon Confluence project area (France), using the Sustainable Urbanizing Landscape Development (SULD) hedonic pricing simulation model. Results show four major tendencies regarding the value-added of green/blue spaces in urban landscapes: (1) cities become more compact; (2) population densities increase; (3) real estate values rise; and (4) demographic distribution patterns change. The magnitude of these impacts depends, however, on the quality and size of the intervention, the social classes attracted to the intervention area and on the location of the intervention relative to existing residential areas, urban centres, road infrastructure and environmental amenities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号