首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification and characterization of medical waste generated in healthcare facilities (HCFs) in a developing African nation has been conducted to provide insights into existing waste collection and disposal approaches, so as to provide sustainable avenues for institutional policy improvement. The study, in Ibadan city, Nigeria, entailed a representative classification of nearly 400 healthcare facilities, from 11 local government areas (LGA) of Ibadan, into tertiary, secondary, primary, and diagnostic HCFs, of which, 52 HCFs were strategically selected. Primary data sources included field measurements, waste sampling and analysis and a questionnaire, while secondary information sources included public and private records from hospitals and government ministries. Results indicate secondary HCFs generate the greatest amounts of medical waste (mean of 10,238 kg/day per facility) followed by tertiary, primary and diagnostic HCFs, respectively. Characterised waste revealed that only approximately 3% was deemed infectious and highlights opportunities for composting, reuse and recycling. Furthermore, the management practices in most facilities expose patients, staff, waste handlers and the populace to unnecessary health risks. This study proffers recommendations to include (i) a need for sustained cooperation among all key actors (government, hospitals and waste managers) in implementing a safe and reliable medical waste management strategy, not only in legislation and policy formation but also particularly in its monitoring and enforcement and (ii) an obligation for each HCF to ensure a safe and hygienic system of medical waste handling, segregation, collection, storage, transportation, treatment and disposal, with minimal risk to handlers, public health and the environment.  相似文献   

2.
As the United States and other countries move toward a greater reliance on nuclear energy, it becomes increasingly important to characterize the environment around such facilities to protect society, human health, and the environment. This article presents an ecological, multidisciplinary approach to gathering the information needed to establish baselines, site new nuclear facilities, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and provide for mitigation, remediation, and decommissioning planning. We suggest that there are five categories of information or data needs: (1) geophysical, sources, fate and transport; (2) biological systems; (3) human health; (4) stakeholder and environmental justice; and (5) societal, economic, and political. All of these categories are influenced by temporal and spatial patterns, vulnerabilities, and global changes. These informational needs are more expansive than the traditional site characterization but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest that technical teams be established for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Although designed for nuclear facilities, the templates and information teams can be adapted for other hazardous facilities. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
In order to determine the efficiency of different treatment systems for the reduction of odorous emissions, a gas chromatographic method followed by simultaneous mass spectrometry and olfactometry (GC-MS/O) was developed. Samples from a coffee bean roasting and a fat and oil processing plant were analyzed, respectively. The results were compared with the data obtained by olfactometric measurements. At a coffee bean roasting plant, cooling gases were analyzed prior to and after treatment in a full scale bioscrubber. The GC-MS/O analysis showed that the amounts of aldehydes and ketones decreased after treatment of cooling gases of coffee bean roasting in the bioscrubber, whereas the contents of the heterocyclic compounds, like pyridine and the pyrazines, and acetophenone and guaiacol remained almost unchanged. The amounts of dimethyl disulfide, 3-hydroxy-2-butanone, and the carboxylic acids increased after bioscrubber treatment. Furthermore, the performance of each stage of a combined experimental plant for the treatment of exhaust air of fat and oil processing was investigated. This treatment plant consisted of a bioscrubber, a biofilter, and an activated carbon adsorber. The important odor-active compounds of the exhaust air of fat and oil processing were the typical fat oxidation products (aldehydes, ketones) and with lower importance 2-pentylfuran, a few terpenes and aromates. Again, the key odor-active compounds, aldehydes and ketones, were degraded in the bioscrubber. Further degradation of aliphatic, unsaturated, methylated, and cyclic alkanes, as well as aromates, terpenes, and furans by the biofilter was observed. After the last treatment stage, the activated carbon filter, only small amounts of aliphatic, unsaturated, methylated, and cyclic alkanes and aromates remained in the waste gas. For both applications, the results of the developed GC-MS/O method correlated very well with olfactometric measurements.  相似文献   

4.
Many federal, state, and private agencies deal with long‐term environmental problems within a transition framework where political administrations, funds, regulators, regulatory requirements, environmental conditions, and tribal and stakeholder concerns change. In this article, we examine the types of transitions, as well as important stabilities, that agencies face, the interactions with stakeholders that are vulnerable to disruption or failure, and some of the problems that develop as a result of these conditions, using the U.S. Department of Energy (US DOE's) Office of Environmental Management (EM) as a case study. Transitions, or instabilities, include changes in administrations at the federal, state, and local level; public perceptions and concerns; political climate; available funds; environmental conditions (e.g., global climate change, global contaminant transport, local and regional contamination); international and national business conditions; and site conditions (physical, chemical, biological). Governmental agencies operate under several different kinds of uncertainties, including scientific, fiscal‐year economic, technological, and societal. Not all information can be known, and the outcomes from scientific issues or technologies cannot always be predicted. The authors believe that transitions from one set of conditions to another can be more effectively integrated with the long‐term stability of environmental laws and regulations, and with the stability of the treaty rights and concerns of tribal nations, as well as the shorter‐term stability of career personnel and established programs. A sense of stability for government agencies allowing maintenance of ongoing environmental management programs can also be achieved through processes and programs, such as establishing long‐term contracts (for remediation or restoration work), schedule and scope documents, future land‐use documents, National Environmental Research Parks (which obligate lands to study and conservation), and other programs that set the direction of work and activities for many years. Further, two other factors are essential for success within any agency facing transitions: (1) expectations should be both forward‐looking and realistic, and (2) there must be flexibility in both programs and processes. The authors conclude that several features are essential to addressing some of the problems created by transitions, including information, integration, iteration, interaction, and inclusion. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
An intensive sampling program of physical and chemical parameters has been undertaken at Vassova lagoon, northeast Greece, in order to examine water circulation and estimate the instantaneous and residual fluxes of water, salt, nutrients and chlorophyll-a through the entrance canal of this lagoon. Field data of hydrographic and water quality parameters were collected under neap and spring tidal cycles, and under winter and summer conditions, to account for the fortnight and seasonal effects in the lagoon. The analysis showed that the Eulerian residual transport is positive in direction during both tidal cycles, thus pushing water, salt, nitrate-nitrogen, phosphate-phosphorus and chlorophyll-a inward Vassova lagoon. Tidal pumping was mostly positive during the neap tide and negative during the spring tidal cycle, thus pushing water, salt, phosphorus and chlorophyll-a outwards of Vassova lagoon.  相似文献   

6.
生物吸附在染料废水处理中的应用   总被引:9,自引:0,他引:9  
生物吸附是微生物细胞和其它物质发生的一系列非发酵关联的吸附过程,其主要作用包括物理和化学吸附、静电作用、离子交换、络合、螯合、微量沉淀等。与生物降解相比,生物吸附不会产生有毒的代谢产物,为染料废水的处理和回收提供了一条经济可行的途径。综述了微生物对染料吸附的作用机制及影响因素如pH、温度、染料初始浓度等,介绍了生物吸附的发展现状及前景。  相似文献   

7.
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.  相似文献   

8.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

9.
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical–chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal.  相似文献   

10.
The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 °C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.  相似文献   

11.
A purview of waste management evolution: special emphasis on USA   总被引:4,自引:0,他引:4  
The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste.  相似文献   

12.
Aerosol composition change between dust storm and non duststorm periods is studied using the TSP (Total SuspendedParticulate) data measured at Gosan, Korea between 1992 and1999. The concentrations of elements measured between 1993and 1996 and those of ions between 1992 and 1999 duringdust storms are compared with those during non-dust stormperiods in spring (March, April, and May). Among theanalyzed ions, the concentrations of crustal species(potassium, calcium, magnesium, and chloride) andanthropogenic species (nitrate and non-sea salt (nss)-sulfate) increased when dust storm occurs while those ofammonium and sodium did not increase. Among the analyzedelements, the concentrations of crustal species (Fe, Al,Ca, Ti, and Zn) increased when dust storm occurs whilethose of anthropogenic species (Mn, V, Ni, Cu, Cd, and Cr)did not increase. The only anthropogenic element of whichconcentration increased during dust storm periods was Pb.It was found that the concentrations of nitrate and nss-sulfatewere highest during spring. Also, the ratio of theyearly average concentrations of nitrate to nss-sulfateincreases, probably due to the emission trend change innortheast Asia, especially, in China.  相似文献   

13.
Pesticides are considered predominant organic pollutants because they are widespread in many ecosystems. Pesticide residues can degrade chemically, physically, and biochemically in nature, but, because of their high stability and, in some cases, water solubility, they continue to persist in the environment. Pesticides have been eliminated from contaminated waters using a variety of methods that fall under the categories of biological, chemical, physical, and physicochemical remediation processes from various types of matrices, including water and soil. Due to their excellent qualities as adsorbents and pesticide transporters, the use of natural soil components such as clays, iron oxides, or humic acid has recently attracted growing interest. Clays have several advantages over other adsorbents, including large specific surface areas due to their small particle size, low cost, and widespread availability. Clay minerals have a great capacity for adsorption due to Coulombic forces and, attributable to their large surface area, van der Waals forces. This review describes historical, current, and emerging techniques and materials to remove the pesticides diuron, carbaryl, and alachlor using clays as adsorbents.  相似文献   

14.
Sustainable remediation guidance, frameworks, and case studies have been published at an international level illustrating established sustainability assessment methodologies and successful implementation. Though the terminology and indicators evaluated may differ, one common theme among international organizations and regulatory bodies is more comprehensive and transparent methods are needed to evaluate the social sphere of sustainable remediation. Based on a literature review and stakeholder input, this paper focused on three main areas: (1) status quo of how the social element of sustainable remediation is assessed among various countries and organizations; (2) methodologies to quantitatively and qualitatively evaluate societal impacts; and (3) findings from this research, including challenges, obstacles, and a path forward. In conclusion, several existing social impact assessment techniques are readily available for use by the remediation community, including rating and scoring system evaluations, enhanced cost benefit analysis, surveys/interviews, social network analysis, and multicriteria decision analysis. In addition, a list of 10 main social indicator categories were developed: health and safety, economic stimulation, stakeholder collaboration, benefits community at large, alleviate undesirable community impacts, equality issues, value of ecosystem services and natural resources, risk‐based land management and remedial solutions, regional and global societal impacts, and contributions to other policies. Evaluation of the social element of remedial activities is not without challenges and knowledge gaps. Identification of obstacles and gaps during the project planning process is essential to defining sustainability objectives and choosing the appropriate tool and methodology to conduct an assessment. Challenges identified include meaningful stakeholder engagement, risk perception of stakeholders, and trade‐offs among the various triple bottom line dimensions. ©2015 Wiley Periodicals, Inc.  相似文献   

15.
The effect of sediment redox conditions on the solubility behavior of Fe, Pb, Ni, Ba, and Cu in bottom sediment collected from a produce water discharge site was investigated using kinetics and chemical fractionation procedures. Sediment collected was composited and subsamples incubated in laboratory microcosms under controlled Eh-pH conditions. Sediment was sequentially extracted for determining metals in five fractions (exchangeable, carbonate, bound to iron and manganese oxide, bound to organic matter and sulfide, mineral matrix or residue). Metal distribution in the fractions indicates that under oxidizing sediment conditions, the behavior of Fe, Pb and Ni were governed by Fe(III) and Mn(IV) oxides; Ba by insoluble complexation with humic compounds; and Cu by carbonates and humic complexation. Under reducing sediment condition, the behaviors of Fe and Cu were controlled by the formation of insoluble sulfides and humic complexes; the behaviors of Ni and Ba by carbonate and Pb behavior by sulfides, carbonates and humic complexes. With increases in sediment redox potential, the affinity between Fe(III), Mn(IV) oxides and Fe, Pb, Ni, Cu increased, the affinity between insoluble large molecular humic and Ba increased, and the affinity between carbonates and Cu increased. With decreasing sediment redox potential, the affinity between carbonates and Fe, Ni, Ba increased; the affinity between sulfides, humic substances and Fe, Pb, Ni, Cu also increased. Upon Fe(III) oxide reduction, it is estimated that 20% of total reducible Fe(III) oxides was reduced by direct bacterial reduction (K = −42.6 ppm/day), 80% of total reducible Fe(III) oxides was associated with chemical fractions attributed to sulfide oxidation (K = −171.5 ppm/day). The rate constants (ppm/day) for dissolved Ni (Eh <0 mV), Pb (Eh < −80 mV) and Cu (−80 mV < Eh <0 mV) are −1.6, −0.047 and −0.16, respectively. In our incubation period, the rate constants (ppm/day) for Ni bound to Fe(III) and Mn(IV) oxides, Ba bound to carbonates and Cu bound to insoluble large molecular humic are −3.2, 0.91 and 4.3, respectively.  相似文献   

16.
Engineering is taking a lead role in sustainability implementation, despite problems linking institutional decision-makers with such things as water purification and cleansing wetlands. An emerging science may help speed an all-system approach to implementing sustainable urban planning. The many innovative approaches to engineering and planning will lead to cities and suburbs where water, urban travel, energy chains and food provision infrastructures are bound together by ESD values, flow-on principles and a workable process of sustainability achievement. JCU Townsville is developing such a process of Sustainability Implementation Planning (SIP) and Engineering, aspiring to become a tropics sustainability exemplar. This article reports on a 90-strong workshop: Paths to Sustainability held in August 2008, with strong regional leadership support. An integrated intellectual frame and ‘futures oriented’ blueprint is provided to achieve the myriad cultural, social, economic, energy, water, food, engineering and environmental needs to ‘go sustainable’ in an urban setting, where most of us live. The workshop results show SIP water management begins with local raindrops, local capture, local ground penetration, use and reuse, entering local nutrient flows to local urban food gardens and then used as a source to grow aquatic protein and fuel oils. Energy engineering becomes a local mix of renewables and innovative storage, appropriate building design, transport systems and industry; including embodied and life-cycle energy analysis and careful considerations in all built structure and use. Urban planning, people movement, housing location and travel mode will increasingly be judged by energy costs, as will food production.  相似文献   

17.
Forestry Best Management Practices (BMPs) were developed to protect water quality. In the eastern US, those BMPs were often expanded to include maintenance of site productivity. Generally, BMPs recommend the use of pre-harvest planning and careful design for construction of roads and other activities that expose bare soil, minimizing trafficking and areas of bare soil, maintaining streamside management zones, ensuring rapid revegetation following harvesting, minimizing soil disturbance, and ameliorating severe trafficking with site preparation. This review of peer-reviewed research from the past 20 years examined the effects of forest harvesting and site preparation on water quality and site productivity in the eastern US. The review was subdivided into areas having relatively similar physiography and land management (New England, Lake States, Appalachian Plateau, Ridge and Valley, Blue Ridge, Piedmont, Atlantic Coastal Plain, Gulf Coastal Plain, and Ouachitas-Ozarks). In general, data from steeper physiographic regions indicated that forest harvesting and site preparation can increase erosion, sediment and nutrient losses to streams. However, the quantities introduced into streams tended to be relatively low, generally below the values that are considered acceptable for alternative land uses. Also most research indicated that water quality recovers within two to five years following forest operation disturbances, particularly if BMPs are employed. Research from the less mountainous and often more poorly drained Lake States and Coastal Plain regions indicated that soil compaction and rutting may or may not cause site productivity effects, depending on soil types, natural ameliorative properties and site preparation. Overall, the research supports the forestry BMPs recommended in the eastern states.  相似文献   

18.
Decisions made during the course of investigating and remediating a contaminated site, as well as the technology used, are most often driven exclusively by physical, technical, and health-based concerns. Additionally, in both determining and managing the potential risks posed by a remediation project, the focus tends to be placed primarily on health risks. However, a contaminated site and its remediation are neither static over time nor do they exist in a vacuum. Other elements of risk associated with the site and remedial activities include continuing regulatory oversight and compliance, public and agency relations, remedial technology costs, current and future land-use issues, and future technological/regulatory risks. Agencies, consultants, contractors, and facility management must consider these other non-health-related elements of risk. Additionally, efforts made to communicate a project's decisions, technologies, and risks are often made in a defensive or reactive posture, resulting in ineffective communication and an alienated, angry, or distrustful public. Proactive risk communication, as well as public involvement in the remedial process, are critical to the success of any remedial activity.  相似文献   

19.
介绍了以麦秸秆、凹凸棒石为原料,以酚醛树脂、固化剂为辅料,按照不同的配比进行混合、干燥、热压,而后采用高温烧结工艺,制备新型复合碳材料。试验制备了各种不同原料配比以及不同烧结温度下的材料,并对材料的物理强度、密度、气孔率、强度、电阻率等性能进行了测试,对其性能表征、形成机理和形成规律进行分析,初步探讨了原料选择、原料配比、碳化温度等参数对制备工艺以及复合材料性能的影响,确定了当麦秸秆∶凹凸棒石=2∶1和3∶1,温度为700~800℃时,材料的各物理性能较为理想。实验证明麦秸秆为原材料制备凹凸棒石的可行性,为麦秸秆的资源化利用、凹凸棒石的应用以及木质陶瓷复合材料的研究开辟了新的研究方向。  相似文献   

20.
Based on a review of hundreds of environmental restoration program optimization reviews, this article describes management tools found in successful and efficient remediation programs. Projects that consistently struggled to achieve their objectives were observed to be missing certain, or to have inadequately used, these tools. The tools are articulated as best practices because when they are present and actively used, project shortcomings were minimal. Priority objectives for site owners and project managers include improving efficiency and effectiveness through performance management, reducing resource usage and energy consumption, ensuring protectiveness, and reducing uncertainty in management decision making. Restoring environmental resources damaged by historic waste management practices began in earnest in the late 1960s and early 1970s with the broad recognition of the problems caused by environmental discharges and spills when wastes are not managed appropriately. Under new regulations, soil and groundwater remediation projects could be, and were, conducted within a defined framework. The number and variety of restoration projects that were launched resulted in a slew of projects progressing through the stages of characterization, decision, and cleanup, and more were added to the cleanup process each year. In the 1990s, the Department of Defense noted that many cleanup efforts were projected to incur substantial operational, maintenance, and monitoring costs for decades into the future. This was correctly perceived as an opportunity to optimize those systems and programs, minimize costs, and reduce health and environmental risks. The best practices outlined in this article address management tools that were identified in optimization efforts that led to effective and efficient environmental remediation projects. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号