首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study a numerical simulation is performed to investigate the effect of ambient density stratification on the characteristic of a vertical buoyant jet in a stably linearly stratified ambient cross-stream. Based on the ensemble integral method, the theoretical formulation for such a flow field consists of a set of elliptic Reynolds-averaged equations incorporating with the k– transport equations for the turbulence closure. An oscillating motion can be observed in the computed jet trajectory, and the corresponding alternative variation of dominant quantities for the induced momentum and buoyancy of the jet are examined by direct integration on a cross-section along the jet axis. The influences on the jet development both by the ambient cross-stream and the stratification are investigated. The oscillation characteristic shows that a linear relation holds between the wavenumber of jet trajectory, crossflow velocity and the Brunt–Väisälä frequency of ambient stratification. Computational results indicate that the formation of the secondary and a third pairs of vortices, which are not induced in the unstratified environment, causes the jet flow oscillation from its maximum height-of-rise in the flowing direction. The ambient stratification prohibits the growth of the plume radius and reduces the mixing rate as well as the plume rise. The developed flow indicates the transformation of entrainment mechanism in stratified crossflow.  相似文献   

2.
A computer model is used to investigate the simulated growth of a theoretical dinoflagellate resembling Gymnodinium splendens in response to a variety of field conditions. Literature data on G. splendens are combined with probable estimates of organism response (where direct data are lacking) to yield light-and temperature-dependent production curves. These production curves are superimposed on a physical model characterized by a diurnally variable light cycle, by a two-layered water column (16°C water overlaying 12°C water) of variable layer thicknesses, and by variable extinction coefficients in the upper layer. The water column is either stationary or perturbed by a semidiurnal (12.4 h) internal wave. Organism behavior ranges from the continuous occupation of selected strata (stationary or wavy) to diurnal vertical migrations within the upper layer or across the thermocline. In stationary water columns, species patchiness depends on spatial differences in the depth preferences of nonmigrating organisms or in the details of the behavior of migrating organisms. In water columns perturbed by a semidiurnal internal wave, spatial differences in the phase relationship between the wave form and daylight supplement organism behavior as a source of patchiness. The models result in their most complex spatial patterns when a population migrates through a thermocline perturbed by a semidiurnal internal wave.University of Texas Marine Science Institute Contribution No. 280.  相似文献   

3.
This study investigates energy dissipation due to air bubble entrainment for three typical phenomena; a hydraulic jump, a 2-D vertical plunging jet and a vertical circular plunging jet into water. A simple model is presented here which enables to estimate the energy transformation and dissipation achieved by air bubbles quantitatively for three above phenomena. The average rate of energy dissipation by air bubbles obtained from the experimental data are 25%, 1.4%, and 2.15% with respect to total energy loss for the hydraulic jump, 2-D vertical plunging jet and vertical circular plunging jet, respectively.  相似文献   

4.

Contamination of coastal water is a persistent threat to ecosystems around the world. In this study, a novel model for describing the dispersion, dilution, terminal layer formation and influence area from a point source discharge into a water body is presented and compared with field measured data. The model is a Combined Integral and Particle model (CIPMO). In the initial stage, the motion, dispersion and dilution of a buoyant jet are calculated. The output from the buoyant jet model is then coupled with a Lagrangian Advection and Diffusion model describing the far-field. CIPMO ensures that both the near- and far-field processes are adequately resolved. The model either uses empirical data or collects environmental forcing data from open source hydrodynamic models with high spatial and temporal resolution. The method for coupling the near-field buoyant jet and the particle tracking model is described and the output is discussed. The model shows good results when compared with measurements from a field study.

  相似文献   

5.
An integral model for the plane buoyant jet dynamics resulting from the interaction of multiple buoyant jet effluxes spaced along a diffuser line is considered as an extension of the round jet formulation that was proposed in Part I. The receiving fluid is given by an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions. Applications for this situation are primarily for submerged multiport diffusers for discharges of liquid effluents into ambient water bodies, but also for multiple cooling tower plumes and building air-conditioning. The CorJet model formulation describes the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow in the plane jet geometry. It employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear and of internal instability mechanisms, and contains a quadratic law turbulent pressure force mechanism. But the model formulation also includes several significant three-dimensional effects that distinguish actual diffuser installations in the water environment. These relate to local merging processes from the individual multiple jets, to overall finite length effects affecting the plume geometry, and to bottom proximity effects given by a “leakage factor” that measures the combined affect of port height and spacing in allowing the ambient flow to pass through the diffuser line in order to provide sufficient entrainment flow for the mixing downstream from the diffuser. The model is validated in several stages: First, comparison with experimental data for the asymptotic, self-similar stages of plane buoyant jet flows, i.e. the plane pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with data for many types of non-equilibrium flows with a plane geometry support the proposed functional form of the entrainment relationship, and also the role of the pressure force in the jet deflection dynamics. Third, the observed behavior of the merging process from different types of multiport diffuser discharges in both stagnant and flowing ambient conditions and with stratification appears well predicted with the CorJet formulation. Fourth, a number of spatial limits of applicability, relating to terminal layer formation in stratification or transition to passive diffusion in a turbulent ambient shear flow, have been proposed. In sum, the CorJet integral model appears to provide a mechanistically sound, accurate and reliable representation of complex buoyant jet mixing processes, provided the condition of an unbounded receiving fluid is satisfied.  相似文献   

6.
海水混合和层化对叶绿素a垂直分布的影响   总被引:2,自引:0,他引:2  
根据长江口海区、近岸浅水区、黄海冷水团海区和水深超过200m的陆架区等四个区域的定点调查获得的数据,分析了温度、盐度与叶绿素a垂直分布的相互关系。结果表明,长江口海区,陆源径流与海水混合不充分,表层营养盐含量较高,表层叶绿素a含量高于中下水层。近岸浅水区的苏北近岸海水垂向没有温跃层和盐跃层,叶绿素a的垂向分布也均匀,东海西部沿岸出现逆温跃层和逆盐跃层,海水垂直混合不充分,叶绿素a含量(6.72mg/m^3)在10m深水域最高。黄海冷水团海区海水的垂直混合不充分,叶绿素a的垂直变化显著,高值区出现在温跃层下方(4.37mg/m^3)。水深超过200m的陆架区,温度的阶梯状结构、营养盐跃层、光照等因素共同导致整个水层叶绿素a含量普遍较低。同时,结合历史资料分析认为,海水的混合、温度和盐度的层化将影响营养盐的浓度和分布,从而影响海水中叶绿素a的垂直分布。  相似文献   

7.
The stability, mixing and effect of downstream control on axisymmetric turbulent buoyant jets discharging vertically into shallow stagnant water is studied using 3D Reynolds-averaged Navier–Stokes equations (RANS) combined with a buoyancy-extended k –ε model. The steady axisymmetric turbulent flow, temperature (or tracer concentration) and turbulence fields are computed using the finite volume method on a high resolution grid. The numerical predictions demonstrate two generic flow patterns for different turbulent heated jet discharges and environmental parameters (i) a stable buoyant discharge with the mixed fluid leaving the vertical jet region in a surface warm water layer; and (ii) an unstable buoyant discharge with flow recirculation and re-entrainment of heated water. A stratified counterflow region always appears in the far-field for both stable and unstable buoyant discharges. Provided that the domain radius L exceeds about 6H, the near field interaction and hence discharge stability is governed chiefly by the jet momentum length scale to depth ratio lM/H, regardless of downstream control. The near field jet stability criterion is determined to be lM/H = 3.5. A radial internal hydraulic jump always exists beyond the surface impingement region, with a 3- to 6-fold increase in dilution across the jump compared with vertical buoyant jet mixing. The predicted stability category, velocity and temperature/concentration fields are well-supported by experiments of all previous investigators.  相似文献   

8.
The vertical distribution of the phytoplankton community in association with water column stability was examined for 1 year in an inshore area of the Southern Aegean Sea. An analysis of variance model (split-plot design) was applied to evaluate the variations in the vertical profile of diatoms, flagellates and coccolithophores. When either weak stratification or mixing conditions prevailed, diatoms in general were uniformly distributed throughout the water column while flagellates and coccolithophores appeared occasionally stratified. During the strong stratification period, all taxa demonstrated significant variations in abundance between depths in most cases. However, none of these taxa was confined to a single depth stratum during either the water mixing or the stratification period, but were all present at all depths during all seasons. The results demonstrate clearly that the parameter taxon is an important component in ecological observations on the vertical distribution of phytoplankton.  相似文献   

9.
Field observations of the interactions between a stratified flow and a canopy suspended from the free surface above a solid boundary are described and analysed. Data were recorded in and around the canopy formed by a large long-line mussel farm. The canopy causes a partial blockage of the water flow, reducing velocities in the upper water column. Deceleration of the approaching flow results in a deepening of isopycnals upstream of the canopy. Energy considerations show that the potential for an approaching stratified flow to be diverted beneath a porous canopy is indicated by a densimetric Froude number. Strong stratification or low-velocities inhibit vertical diversion beneath the canopy, instead favouring a horizontal diversion around the sides. The effect on vertical mixing is also considered with a shear layer generated beneath the canopy and turbulence generated from drag within the canopy. In the observations, stratification is shown to be of sufficient strength to limit the effectiveness of the first mixing process, while the turbulence within the canopy is likely to enhance vertical exchange. Velocity and temperature microstructure measurements are used to investigate the effect of the canopy on turbulent dissipation and show that dissipation is enhanced within the canopy.  相似文献   

10.
重气连续泄漏扩散的盐水模拟实验   总被引:1,自引:0,他引:1  
秦颂  董华  张启波  薛梅  曹烨 《环境化学》2007,26(5):666-670
根据相似理论,分析了用盐水模拟方法研究意外泄漏的重气在大气中扩散过程的可行性,通过假设重气为不可压缩气体以及在均匀温度场中扩散等条件,推导出模拟实验的准则数.采用缩比模型的盐水模拟实验,对重气在大气中的扩散速度及浓度变化进行了分析,证实了重气扩散过程中的重力沉降、密度分层以及近源区分叉等现象.实验表明,在满足主导准则数相等的条件下,盐水在清水中的扩散可以较好地再现重气在大气中的扩散特征.  相似文献   

11.
Engines in boats and ships using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. Their impact on the Australian coastline and marine ecosystems is of great concern. The purpose of this study was to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) within a 0.4 m-wide and 0.15 m-deep flume, operating at 1,500 and 3,000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Results pertaining to radial distribution, self-similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration fitted with empirical correlations. Furthermore, propeller-induced mixing and pollutant source concentration from a two-stroke engine were estimated.  相似文献   

12.
In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations.  相似文献   

13.
A comprehensive experimental investigation for an inclined ( $60^{\circ }$ to vertical) dense jet in perpendicular crossflow—with a three-dimensional trajectory—is reported. The detailed tracer concentration field in the vertical cross-section of the bent-over jet is measured by the laser-induced fluorescence technique for a wide range of jet densimetric Froude number $Fr$ and ambient to jet velocity ratios $U_r$ . The jet trajectory and dilution determined from a large number of cross-sectional scalar fields are interpreted by the Lagrangian model over the entire range of jet-dominated to crossflow-dominated regimes. The mixing during the ascent phase of the dense jet resembles that of an advected jet or line puff and changes to a negatively buoyant thermal on descent. It is found that the mixing behavior is governed by a crossflow Froude number $\mathbf{F} = U_r Fr$ . For $\mathbf{F} < 0.8$ , the mixing is jet-dominated and governed by shear entrainment; significant detrainment occurs and the maximum height of rise $Z_{max}$ is under-predicted as in the case of a dense jet in stagnant fluid. While the jet trajectory in the horizontal momentum plane is well-predicted, the measurements indicate a greater rise and slower descent. For $\mathbf{F} \ge 0.8$ the dense jet becomes significantly bent-over during its ascent phase; the jet mixing is dominated by vortex entrainment. For $\mathbf{F} \ge 2$ , the detrainment ceases to have any effect on the jet behavior. The jet trajectory in both the horizontal momentum and buoyancy planes are well predicted by the model. Despite the under-prediction of terminal rise, the jet dilution at a large number of cross-sections covering the ascent and descent of the dense jet are well-predicted. Both the terminal rise and the initial dilution for the inclined jet in perpendicular crossflow are smaller than those of a corresponding vertical jet. Both the maximum terminal rise $Z_{max}$ and horizontal lateral penetration $Y_{max}$ follow a $\mathbf{F}^{-1/2}$ dependence in the crossflow-dominated regime. The initial dilution at terminal rise follows a $S \sim \mathbf{F}^{1/3}$ dependence.  相似文献   

14.
Depth-stratified samples, collected during a period where the water column was vertically mixed (March 2000) and a period of thermal stratification (September 2000), were analyzed in order to investigate the horizontal and vertical distribution patterns and composition of mesozooplankton, especially copepod species assemblages, in a pelagic (Ionian Sea) and a coastal area (Patraikos Gulf) of the eastern Mediterranean. Total mesozooplankton abundance and biomass were significantly lower in the highly oligotrophic offshore waters of the Ionian Sea when compared to the semi-enclosed Patraikos Gulf during both seasons. Small-sized copepods dominated the mesozooplankton community. An ‘offshore’ and a ‘coastal’ copepod assemblage were defined in the surface layer (0–50 m) only during March when differences in environmental conditions (i.e., temperature, salinity and fluorescence) were strong between the two areas. Copepod vertical community structure in offshore waters differed between sampling months. In March one assemblage (0–200 m) was mainly identified, while in September three distinct assemblages (0–50, 50–100 and 100–200 m) were observed, related to different vertical distribution patterns of the various copepod species. A pronounced seasonal change of the dominant copepods was evident in the surface layer, where strong differences in hydrological properties were observed from March to September. Below this layer, the copepod community was relatively stable showing decreasing seasonal differences with increasing depth.  相似文献   

15.
In this study, a three-dimensional model was used to numerically study the buoyant flow, along with its mixing characteristics, of heated water discharged from the surface and submerged side outfalls in shallow and deep water with a cross flow. Hydraulic experimental data were used to evaluate the applicability of the model. The simulation results agree well with the experimental results, particularly, the jet trajectories, the dimensions of the recirculating zone, and the distribution of the dimensionless excess temperature. The level of accuracy of the simulation results of the present study is nearly identical to that of the results conducted by McGuirk and Rodi (1978). If the heated water is discharged into shallow water where the momentum flux ratio and the discharge densimetric Froude number are high, the submerged discharge method is better than the surface discharge method in terms of the scale of the recirculating zone and the minimum dilution. In deep water, where the momentum flux ratio and discharge densimetric Froude number are low, however, the submerged discharge method had few advantages. In shallow water, the discharge jet is deflected by the ambient cross flow, while forcing the ambient flow to bend towards the far bank for the full depth. For a submerged discharge in shallow water, the recirculating zone is the largest in the lowest layer but becomes smaller in the upper layer. As the water depth increases, the ambient flow goes over the jet and diminishes the blocking effect, thereby decreasing the bending of the jet.  相似文献   

16.
《Ecological modelling》2005,181(1):39-57
A dynamic mathematical model was developed to predict the effluent quality of facultative wastewater stabilization ponds. For a sound representation of sediment–water column, water column–atmosphere interactions and stratification due to variations in dissolved oxygen concentrations, a two-dimensional hydraulic model was employed considering dispersed flow and diffusion in horizontal and vertical directions, respectively. Resulting partial differential equation system was solved using finite difference methods and matrix manipulation techniques. The model has been calibrated and evaluated on the basis of collected data from a full-scale facultative stabilization pond in Selçuk, Izmir. Variations of COD, NH4-N, PO4-P, dissolved oxygen, bacteria and algae concentrations with time and the dimensions of the pond were estimated by using the dynamic model. The model can be used for design of new stabilization ponds and also, for improving the effluent quality of existing ponds.  相似文献   

17.
The subsurface resistivity layer parameters of 47 vertical geoelectrical soundings are analyzed for a rectangle shaped area of 70 km2 from the Gulf of Aqaba coast. For this purpose, the Dar-Zarrouk parameters i.e., (i) total longitudinal unit conductance, (ii) total transverse unit resistance and (iii) average longitudinal resistivity are used to determine the resistivity regime of the water bearing formations. The significance of these parameters is to establish a vision about the occurrence and distribution of water bodies, while dealing with complicated situations of resistivity ranges intermixing for saline, brackish and fresh water aquifers. The results obtained from the study area suggest that the Dar-Zarrouk parameters proved useful in providing confident solution to delineate water-bearing formations. The behavior of the Dar-Zarrouk parameters and its patterns in space over large areas with respect to the occurrence of water aquifer systems in the deltaic coastal area has been demonstrated.  相似文献   

18.
Solar radiation as a primary abiotic factor affecting productivity of seaweeds was monitored in the Arctic Kongsfjord on Spitsbergen from 1996 to 1998. The radiation was measured in air and underwater, with special emphasis on the UV-B (ultraviolet B, 280–320 nm) radiation, which may increase under conditions of stratospheric ozone depletion. The recorded irradiances were related to ozone concentrations measured concurrently in the atmosphere above the Kongsfjord with a balloon-carried ozone probe and by TOMS satellite. For comparison, an ozone index (a spectroradiometrically determined irradiance of a wavelength dependent on ozone concentration, standardized to a non-affected wavelength) was used to indicate the total ozone concentration present in the atmosphere. Weather conditions and, hence, solar irradiance measured at ground level were seldom stable throughout the study. UV-B irradiation was clearly dependent on the actual ozone concentration in the atmosphere with a maximal fluence rate of downward irradiance of 0.27 W m−2 on the ground and a maximal daily fluence (radiation exposure) of 23.3 kJ m−2. To characterize the water body, the light transmittance, temperature and salinity were monitored at two different locations: (1) at a sheltered shallow-water bay and (2) at a wave-exposed, deep-water location within the Kongsfjord. During the clearest water conditions in spring, the vertical attenuation coefficient (K d) for photosynthetically active radiation (PAR) was 0.12 m−1 and for UV-B 0.34 m−1. In spring, coinciding with low temperatures and clear water conditions, the harmful UV radiation penetrated deeply into the water column and the threshold irradiance negatively affecting primary plant productivity was still found at about 5–6 m depth. The water body in spring was characterized as a Jerlov coastal water type 1. With increasing temperature in summer, snow layers and glacier ice melted, resulting in a high discharge of turbid fresh water into the fjord. This caused a stratification in the optical features, the salinity and temperature of the water body. During melt-water input, a turbid freshwater layer was formed above the more dense sea water. Under these conditions, light attenuation was stronger than defined for a Jerlov coastal water type 9. Solar radiation was strongly attenuated in the first few metres of the water column. Consequently, organisms in deeper water are protected against harmful UV-B radiation. In the surface water, turbidity decreased when rising tide caused an advection of clearer oceanic water. In the course of the summer season, salinity continuously decreased and water temperature increased particularly in shallow water regions. The impact of global climate change on the radiation conditions under water and its effects on primary production of seaweeds are discussed, since organisms in the eulittoral and upper sublittoral zones are affected by UV radiation throughout the polar day. In clearer water conditions during spring, this may also apply to organisms inhabiting greater depths. Received: 20 June 2000 / Accepted: 17 October 2000  相似文献   

19.
Individuals belonging to 6 species of ascidians were kept in experimental vessels filled with filtered sea water, for a defined period. Pterins and flavins were identified in the bodies of each species and in the ambient sea water by the method of Momzikoff (1974). The possible causes of the recorded variations in composition are discussed; these differences seem related to the ordinal position of the species. Numerous unidentified substances are excreted together with pterins (2-amino-4-hydroxypteridine and isoxanthopterin) and riboflavin into the surrounding medium. Ascidians may be the source of a significant quantity of these substances in the sea.  相似文献   

20.
We consider the problem of the vertically upwards disposal of heavy brine sewage from a two-dimensional diffuser in a lighter, homogeneous, motionless and shallow ambient sea. The rejected high salinity water of seawater desalination plants for urban and agricultural uses is such a case of a two dimensional fountain. The disposal of brine sewage produces a negative buoyant jet due to its initial momentum, which impinges on the free surface, spreads laterally on it and then sinks downwards, because of the negative buoyancy. Laboratory experiments and dimensional considerations are used in this paper in order to investigate the spreading behavior (width) of the vertical fountain which impinges on the free surface of the shallow ambient fluid. The experimental results have been used to derive an equation relating the width at the free surface with the initial parameters of the flow. In addition, the experimentally measured dilution of the heavier brine sewage on the recipient’s surface is compared with the dilution which was calculated by a numerical simulation of a well-known commercial software package, CORJET (a CORMIX sub model).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号