首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosorption potential of green macroalgae Cladophora sp., (GAC) for the removal of hexavalent chromium (Cr(VI)) and malachite green (MG) from aqueous medium was investigated. Optimal conditions for biosorption experiments were determined as a function of initial pH, GAC dosage, temperature and initial concentration of Cr(VI) and MG. The biosorption equilibrium data were fitted with the isotherm models of Langmuir, Freundlich, Kiselev, Frumkin and Jovanovic, while the experimental data were analysed using the kinetic models such as pseudo-first-order, pseudo-second-order, Ritchie's and intraparticle diffusion. The Langmuir maximum biosorption capacity was calculated as 100.00?mg/g (Cr(VI)) and 142.85?mg/g (MG). The biosorption kinetic data showed better agreement with the pseudo-second-order kinetic model. The thermodynamic parameters indicated spontaneous and endothermic nature of the biosorption process for Cr(VI) removal, whereas exothermic in the case of MG removal. Furthermore, the biosorption efficiencies of the GAC reusability were found significant up to five cycles and tested using 0.1, 0.5 and 1.0?M HCl, respectively. The results of the present study indicated that GAC is a suitable biosorbent for the sequestration of Cr(VI) and MG from aqueous solutions.  相似文献   

2.
Cr(VI) represents an environmental challenge in both soil and water as it is soluble and bioavailable over a wide range of pH. In previous investigations, Portulaca oleracea (a plant local to the United Arab Emirates (UAE)) demonstrated particular ability for the phytoextraction of Cr(VI) from calcareous soil of the UAE. In this publication, the results of the evaluation of P. oleracea phytoextraction of Cr(VI) from UAE soil at higher concentrations are reported. P. oleracea was exposed to nine different concentrations of Cr(VI) in soil from 0 to 400 mg kg?1. The uptake of Cr(VI) increased as its concentration in soil increased between 50 and 400 mg kg?1, with the most efficient removal in the range from 150 to 200 mg kg?1. The total chromium concentrations exceeded 4600 mg kg?1 in roots and 1400 mg kg?1 in stems, confirming the role of P. oleracea as an effective Cr(VI) accumulator. More than 95% of the accumulated Cr(VI) was reduced to the less toxic Cr(III) within the plant.  相似文献   

3.
4.
The synthesis of 1,3,5-triazine-triethylenetetramine (TATETA), its characterization by infrared spectroscopy and elemental analysis, and its application for removal of Cr(VI) ions from aqueous solution is reported. The effects of pH, contact time, initial concentration of Cr(VI), sorbent dose, and temperature on adsorption were investigated and optimized by batch adsorption experiments. Adsorption was highest at acidic conditions with an equilibration time of 25 min. The adsorption followed a Langmuir model, with an adsorption capacity of 303 mg g?1, was second order in its kinetics, and exothermic and thus spontaneous.  相似文献   

5.
研究了胶原纤维固化黑荆树单宁对Cr(VI)的吸附.采用不同温度、pH值等条件进行吸附研究,并进一步探讨了固化黑荆树单宁的吸附动力学和吸附柱动力学及其吸附机理.结果表明,该材料对Cr(VI)的吸附平衡符合Freundlich方程,温度对吸附平衡的影响不明显;吸附动力学可用拟二级速度方程来描述,该材料同时具有良好的柱动力学特性;Cr(VI)的吸附过程可能存在3个反应,即Cr(VI)与吸附剂之间发生氧化还原反应生成Cr(III),Cr(III)和-COOH之间发生离子交换反应,以及Cr(III)与单宁的邻位羟基发生螯合.图8表2参10  相似文献   

6.
High quality and low cost carbon can be prepared from Eupatorium adenophorum (E. adenophorum) and Buckwheat straw. The biosorbent was used for Cr(VI) removal. The effect of experimental parameters, such as pH, sorbent dosage and temperature were examined and the optimal experimental condition was determned. Solution pH is found influencing the adsorp- tion. Cr(VI) removal efficiency is found to be maximum (98%) at pH= 1. Langmuir and Freundlich adsorption isotherms were applicable to the adsorption process and their constants were evaluated. The adsorption data obtained agreed well with the Langmuir sorption isotherm model. The maximum adsorption capacities for Cr(VI) ranged from 46.23 to 55.19mg.g^-1 for temperature between 298 K and 308 K under the condition of pH = 1.0. Thermodynamic parameters such as free energy change (AG), enthalpy (AH) and entropy (AS) indicate a spontaneous, endothermic and increased randomness nature of Cr(VI) adsorption. Studies found that the raw E. adenophorum and buckwheat straw mixed materials with simple treatment had a high efficiency for the removal of Cr(VI) and would be a promising adsorbent.  相似文献   

7.
对固定化枝孢霉(Cladosporiumsp.)吸附Cu2+进行了研究,结果表明,当海藻酸钙浓度为3%,CaCl2浓度为4%,菌量为15%(V:V)时,包埋制得的固定化小球具有较好的机械性能和较高的吸附量。并考察了不同因素如接触反应时间,溶液的pH,温度对生物吸附的影响,结果表明:生物吸附平衡时间为3h左右,固定化空白小球和活菌的最佳pH值分别为3.5和4.0,在15℃~45℃的温度范围内,温度对吸附量变化有一定的影响。在一定浓度范围(30~500mg/L)内,生物吸附随浓度的增加而增加,Langmuir型吸附模式较好描述Cu2+在固定化小球的吸附实验数据,其线性回归系数高达0.99,HCl、HNO3、柠檬酸都是有效的解吸剂,解吸吸附后的海藻酸钙小球,解吸率都在92%以上,其中以硝酸的解吸效果为最好。  相似文献   

8.
Removal of cadmium(II), lead(II), and chromium(VI) from aqueous solution using clay, a naturally occurring low-cost adsorbent, under various conditions, such as contact time, initial concentration, temperature, and pH has been investigated. The sorption of these metals follows both Langmuir and Freundlich adsorption isotherms. The magnitude of Langmuir and Freundlich constants at 30°C for cadmium, lead, and chromium indicate good adsorption capacity. The kinetic rate constants (K ad) indicate that the adsorption follows first order. The thermodynamic parameters: free energy change (ΔG o), enthalpy change (ΔH o), and entropy change (ΔS o) show that adsorption is an endothermic process and that adsorption is favored at high temperature. The results reveal that clay is a good adsorbent for the removal of these metals from wastewater.  相似文献   

9.
A bacterial strain capable of degrading carbofuran as the sole carbon source was isolated from carbofuran-phytoremediated rhizosphere soil of rice. A 16S rRNA study identified the strain as Burkholderia sp. (isolate PCL3). Free cells of isolate PCL3 possessed inhibitory-type degradation kinetics with a q max of 0.087 day?1 and S m of 248.76 mg·L?1. Immobilised PCL3 on corncob and sugarcane bagasse possessed Monod-type degradation kinetics with a q max of 0.124 and 0.098 day?1, respectively. The optimal pH and temperature with the highest degradation rate coefficient of carbofuran were pH 7.5 and 35 °C, respectively.  相似文献   

10.
The adsorption of chromium(VI) onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of contact time, adsorbent dose, Cr(VI) concentration, pH and temperature were investigated. The two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q 0) was found to be 120.5?mg Cr(VI) per g of the adsorbent. The adsorption followed the second-order kinetics and was found to be maximum at pH 2.0. The pH effect and the desorption studies showed that ion exchange mechanism might be involved in the adsorption process. The effects of foreign ions such as chloride, sulphate, phosphate, selenite, molybdate, nitrate and perchlorate on the removal of Cr(VI) have been investigated. The removal of Cr(VI) from synthetic ground water was also tested. The results show that ZnCl2 activated coir pith carbon is effective for the removal of Cr(VI) from water.  相似文献   

11.
● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress. ● N2H4 accelerated electron transfer of Cr(VI) reduction for detoxification. ● N2H4 enhanced anammox metabolism for activity recovery from Cr(VI) inhibition. ● Extracellular Cr(VI) reduction to less toxic Cr(III) was the dominant mechanism. The hexavalent chromium (Cr(VI)) would frequently impose inhibition to anaerobic ammonium oxidation (anammox) process, hindering the efficiency of nitrogen removal in wastewater treatment. Hydrazine (N2H4), which is an intermediate product of anammox, participates in intracellular metabolism and extracellular Cr(VI) reduction. However, the roles of N2H4-induced intracellular metabolism and extracellular reduction in nitrogen removal under Cr(VI) stress remain unclear. The addition of 3.67 mg/L of N2H4 increased the anammox activity by 17%. As an intermediate, N2H4 enhanced anammox metabolism by increasing the heme c content and electron transfer system activity. As a reductant, N2H4 accelerated the reduction of c-Cyts-mediated extracellular Cr(VI) to the less toxic Cr(III). Extracellular Cr(III) accounts for 74% of the total Cr in a Cr(VI)-stressed anammox consortia. These findings highlight that N2H4-induced extracellular Cr(VI) reduction is the dominant mechanism for the survival of anammox consortia. We also found that N2H4 increased the production of extracellular polymeric substances to sequester excessive Cr(VI) and produced Cr(III). Taken together, the study findings suggest a potential strategy for enhancing nitrogen removal from ammonium-rich wastewater contaminated with Cr(VI).  相似文献   

12.
以油页岩渣及其二氧化钛改性材料为吸附剂,探究它们去除水溶液中亚甲基蓝和六价铬的能力.通过实验,控制溶液的pH值、温度、初始浓度和接触时间,观察吸附效果变化特征,研究其动力学和热力学性能.实验表明,改性油页岩渣吸附亚甲基蓝和六价铬的吸附率是未改性的2—3倍,且改性油页岩渣对亚甲基蓝的吸附率可达97%,对六价铬的吸附率不到25%.吸附亚甲基蓝时,pH值越大,吸附效果越好;而吸附六价铬时,最适pH值为4.改性油页岩渣吸附亚甲基蓝实验符合准二阶动力学方程,计算得反应活化能为13.29 kJ.mol-1,表明此过程主要是物理吸附.在热力学方面,由范特霍夫方程计算得ΔG〈0、ΔH〉0,表明此过程自发吸热,可见此过程还伴有化学吸附.Langmuir和Freundlich等温模型拟合结果表明,Langmuir模型数据拟合甚佳,R2=0.9999,说明改性油页岩渣吸附亚甲基蓝是单分子层吸附.二氧化钛改性油页岩渣经7次回收利用后,对亚甲基蓝的吸附效果仅减少约1.5%.  相似文献   

13.
Batch biosorption experiments were conducted to remove Cr(III) from aqueous solutions using activated sludge from a sewage treatment plant. An investigation was conducted on the effects of the initial pH, contact time, temperature, and initial Cr(III) concentration in the biosorption process. The results revealed that the activated sludge exhibited the highest Cr(III) uptake capacity (120 mg·g−1) at 45°C, initial pH of 4, and initial Cr(III) concentration of 100 mg·L−1. The biosorption results obtained at various temperatures showed that the biosorption pattern accurately followed the Langmuir model. The calculated thermodynamic parameters, ΔGo (−0.8– −4.58 kJ·mol−1), ΔHo (15.6–44.4 kJ·mol−1), and ΔSo (0.06–0.15 kJ·mol−1·K−1) clearly indicated that the biosorption process was feasible, spontaneous, endothermic, and physical. The pseudo first-order and second-order kinetic models were adopted to describe the experimental data, which revealed that the Cr(III) biosorption process conformed to the second-order rate expression and the biosorption rate constants decreased with increasing Cr(III) concentration. The analysis of the values of biosorption activation energy (Ea = −7 kJ·mol−1) and the intra-particle diffusion model demonstrated that Cr(III) biosorption was film-diffusion-controlled.  相似文献   

14.
In this study, we prepared a new adsorbent and evaluated its ability to adsorb Mo(VI). Gibbsite was granulated with colloidal alumina or colloidal silica. The amount of Mo(VI) adsorbed onto granular gibbsite with a binder, effect of contact time and pH on the adsorption of Mo(VI), and column experiments were investigated. The amount of Mo(VI) adsorbed was greater in the order of ST12 (colloidal silica, 12%)?相似文献   

15.
Arthrobacter sp. strain CN2, capable of degrading 4-nitrophenol, was isolated from activated sludge. Degradation of 4-nitrophenol was optimized at pH 7.7, 30?°C, and 0.53% of glucose. Salt tolerance of 4-nitrophenol degradation was as high as 6% (w/v). Several biodegradation intermediates were identified and quantified by high-performance liquid chromatography and mass spectrometry. 4-Nitrocatechol is involved in the degradation of 4-nitrophenol by CN2. Scale-up of 4-nitrophenol degradation was conducted in a bioreactor with different salinity. When the salinity was below 7%, the degradation rate of 4-nitrophenol was above 90% (100 mg L?1, 3 L).  相似文献   

16.
• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized. • The maximum adsorption capacity of Cr(VI) reached up to 285.71 mg/g at 318K. • The potential mechanism for Cr(VI) adsorption by NHPC was put forward. • DFT analyzed the adsorption energy and interaction between NHPC and Cr(VI). To develop highly effective adsorbents for chromium removal, a nitrogen-doped biomass-derived carbon (NHPC) was synthesized via direct carbonation of loofah sponge followed by alkali activation and doping modification. NHPC possessed a hierarchical micro-/mesoporous lamellar structure with nitrogen-containing functional groups (1.33 at%), specific surface area (1792.47 m2/g), and pore volume (1.18 cm3/g). NHPC exhibited a higher Cr(VI) adsorption affinity than the HPC (without nitrogen doping) or the pristine loofah sponge carbon (LSC) did. The influence of process parameters, including pH, dosage, time, temperature, and Cr(VI) concentration, on Cr(VI) adsorption by NHPC were evaluated. The Cr(VI) adsorption kinetics matched with the pseudo-second-order model (R2≥0.9983). The Cr(VI) adsorption isotherm was fitted with the Langmuir isotherm model, which indicated the maximum Cr(VI) adsorption capacities: 227.27, 238.10, and 285.71 mg/g at 298K, 308K, and 318K, respectively. The model analysis also indicated that adsorption of Cr(VI) on NHPC was a spontaneous, endothermal, and entropy-increasing process. The Cr(VI) adsorption process potentially involved mixed reductive and adsorbed mechanism. Furthermore, computational chemistry calculations revealed that the adsorption energy between NHPC and Cr(VI) (−0.84 eV) was lower than that of HPC (−0.51 eV), suggesting that nitrogen doping could greatly enhance the interaction between NHPC and Cr(VI).  相似文献   

17.
Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been examined, particularly from the perspective of the co-presence of Cd(II) and Cr(VI) in a wastewater. Four known indigenous Cd-tolerant EAB of Ochrobactrum sp X1, Pseudomonas sp X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7 removed more Cd(II) and less Cr(VI) in the simultaneous presence of Cd(II) and Cr(VI), compared to the controls with individual Cd(II) or single Cr(VI). Response of these EAB toward exotic Cr(VI) was related to the associated subcellular metal distribution based on the sensing of fluorescence probes. EAB cell membrane harbored more cadmium than chromium and cytoplasm located more chromium than cadmium, among which the imaging of intracelluler Cr(III) ions increased over time, contrary to the decreased trend for Cd(II) ions. Compared to the controls with single Cd(II), exotic Cr(VI) decreased the imaging of Cd(II) ions in the EAB at an initial 2 h and negligibly affected thereafter. However, Cd(II) diminished the imaging of Cr (III) ions in the EAB over time, compared to the controls with individual Cr(VI). Current accelerated the harboring of cadmium at an initial 2 h and directed the accumulation of chromium in EAB over time. This study provides a viable approach for simultaneously quantitatively imaging Cd(II) and Cr (III) ions in EAB and thus gives valuable insights into the response of indigenous Cd-tolerant EAB toward exotic Cr(VI) in MECs.
  相似文献   

18.
Given the wide industrial use of chromium (Cr) and its environmental contamination, chromium represents a risk to humans exposed to the metal. Considering that Cr(VI) is a potent oxidizing agent that increases intracellular oxidation and DNA damage, it would be worth considering the pretreatment of cells with antioxidants as a means of preventing Cr(VI)-induced toxicity. The objective of this study was to pretreat yeast cells with the water-soluble vitamin E analogue Trolox in an effort to increase cell tolerance against reactive chromium and reactive oxygen species formed during Cr(VI) reduction. Results revealed a decrease in Cr(VI)-induced cytotoxicity and mitotic gene conversions in Trolox-pretreated cells. The protective effect of Trolox in Cr(VI) induced genotoxicity was confirmed also with the prokaryotic Salmonella typhimurium SOS/umu test. Pretreatment of cells with Trolox (1) increased total Cr bioaccumulation, (2) decreased Cr(VI)-induced intracellular oxidation, (3) decreased Cr(V) persistence and (4) increased OH? formation in yeast extracts. These findings might be useful in directing future investigations concerning the use of Trolox as a human antioxidant supplement, and in clinical applications related to Cr-induced genotoxicity in occupational and environmental situations where chromium is a problem.  相似文献   

19.
• A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.  相似文献   

20.
为了探讨微生物修复不同类型多环芳烃污染土壤的可行性,应用固定化毛霉对多环芳烃污染工业土壤及农田土壤进行微生物修复,用羟丙基-β-环糊精(HPCD)提取模拟评价多环芳烃的微生物可利用性,并分析多环芳烃微生物降解和生物可利用性的相关关系.焦化厂污染土壤中多环芳烃的30 d降解率为77.6%,沈抚灌区污染土壤中多环芳烃的30 d降解率为54.2%,焦化厂土壤和污灌区农田土壤中多环芳烃降解差异明显.焦化厂土壤和污灌区土壤中多环芳烃的30 d降解量和多环芳烃的环糊精可提取量具有相关性,各环数多环芳烃的环糊精可提取量变化解释了焦化厂和污灌区土壤中多环芳烃降解的差异机制,说明可用环糊精提取量预测微生物降解土壤多环芳烃的情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号