首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The persistence and metabolism of imidacloprid in soil under sugarcane were studied following application of imidacloprid at 20 and 80 g active ingredient (a.i.) ha?1. Soil samples were collected at different time intervals (7, 15, 30, 45, 60 and 90 days after application), and the residues of imidacloprid and its metabolites (6-chloronicotinic acid, nitrosimine, imidacloprid-NTG, olefin, urea and 5-hydroxy) were quantified by high-performance liquid chromatography. In soil, the total imidacloprid residues were mainly constituted by the parent compound followed by 6-chloronicotinic acid, nitrosimine and imidacloprid-NTG metabolites. Maximum residues of imidacloprid and its metabolites were 4.29 and 7.81 mg kg?1 in soil samples collected 7 days after the application of imidacloprid at 20 and 80 g a.i. ha?1, respectively. At both doses, these residues declined to below the detectable limit in soil after 90 days of application. Olefin, urea and 5-hydroxy metabolites were not detected in soil. Dissipation of total imidacloprid residues did not follow the first-order kinetics with a coefficient of determination value of 0.883 and 0.838 for the recommended dose and four times the recommended dose, respectively. The half-life (T 1/2) value of total imidacloprid was observed to be 10.64 and 10.10 days for the recommended dose and four times the recommended dose, respectively.  相似文献   

2.
The metabolic degradation and persistence of imidacloprid in paddy field soil were investigated following two applications of imidacloprid at 20 and 80 g a.i. ha?1 at an interval of 10 days. The soil samples were collected at various time intervals. The limit of quantification for the analysis of imidacloprid and its metabolites was obtained at the concentration of 0.01 mg kg?1. The initial deposits of total imidacloprid were found to be 0.44 and 1.61 mg kg?1 following second applications. These residues could not be detected after 60 and 90 days following second applications of imidacloprid at lower and higher dosages, respectively. In soil, urea metabolite was found to be the maximum, followed by olefine, nitrosimine, 6-chloronicotinic acid, 5-hydroxy and nitroguanidine. The half-life values (t 1/2) of imidacloprid were worked out to be 12.04 and 11.14 days, respectively, when applied at lower and higher doses, respectively.  相似文献   

3.
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P?+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO4 3?), sulfate (SO4 2?), ferrous (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

4.
The technique of diffusive gradients in thin film (DGT) has been shown to be a promising tool to assess zinc (Zn) bioavailability in soils, but there exists considerable debate on its suitability. In this study, Zn bioavailability was systematically investigated in wheat- and maize-grown soils using this technique and seven traditional methods, including soil solution concentration and six widely used single-step extraction methods (HAc, EDTA, NaAc, NH4Ac, CaCl2, and MgCl2). The concentrations of Zn in the shoots and roots of these two plant species increased continuously with increasing additions of Zn to the soils, accompanied by significant decreases in shoot biomass and root biomass at Zn concentrations greater than 400 mg kg?1 for maize and 800 mg kg?1 for wheat. Zinc uptake and accumulation was higher in maize roots than in wheat roots. Both the concentrations of bioavailable Zn measured by DGT (C DGT) and soil solutions (C sol) increased linearly with increasing additions of Zn to the soils, while no strong linear relationships were observed for the extraction methods. Higher concentrations of extractable Zn, lower values of C sol, and larger values of R (i.e., the ratio of C DGT to C sol) were observed in maize-grown soils compared with those of wheat-grown soils, while the values of C DGT between the two plants were similar. These findings demonstrate that there likely exists a stronger resupply of Zn from the soil solid phases in maize-grown soils to satisfy a higher Zn uptake and accumulation in this plant. Linear correlation analyses showed that C DGT had the highest correlation coefficients with plant Zn concentrations compared with other traditional methods, implying that the DGT technique is more sensitive and robust in reflecting Zn bioavailability in soils to plants.  相似文献   

5.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   

6.
We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg?1 of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg?1 for acid and alkaline soils, respectively.  相似文献   

7.
This study investigates adsorption-desorption and the leaching potential of glyphosate and aminomethylphosphonic acid (AMPA) in control and amended—addition of cow dung or rice husk ash—acidic Malaysian soil with high oxide mineral content. The addition of cow dung or rice husk ash increased the adsorptive removal of AMPA. The isotherm data of glyphosate and AMPA best fitted the Freundlich model. The constant Kf for glyphosate was high in the control soil (544.873 mg g?1) followed by soil with cow dung (482.451 mg g?1) then soil with rice husk ash (418.539 mg g?1). However, for AMPA, soil with cow dung was high (166.636 mg g?1) followed by soil with rice husk ash (137.570 mg g?1) then the control soil (48.446 mg g?1). The 1/n values for both glyphosate and AMPA adsorptions were <?1 indicating their strong affinity for adsorbents. Desorption of both glyphosate and AMPA occurred only in the control soil. The compounds were not detected in soils with added cow dung or rice husk ash. The addition of cow dung or rice husk ash increased glyphosate mobility. However, ground water ubiquity scores for both control and amended soils were <?2.8. This indicated glyphosate is a transitional herbicide; therefore, its leaching potential in the soil is low, despite the addition of cow dung or rice husk ash. Addition of these wastes decreased the mobility and leaching potential of AMPA. The addition of cow dung or rice husk ash could be beneficial in increasing adsorption and enhancing degradation of these compounds.  相似文献   

8.
Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830?±?19.6 mgkg?1 dw and 6,950?±?68.3 mgkg?1 dw (exceeding DPR set limits) and 11.3?±?0.04 mgkg?1 dw and 186?±?0.02 mgkg?1 dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.  相似文献   

9.
Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson’s diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson’s diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0?×?107, 9.06?×?107, and 1.50?×?108 spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.  相似文献   

10.
Some common organochlorine, organophosphorus and pyrethroid insecticides were analysed in agricultural soil samples (n?=?35) and surface water and groundwater samples (n?=?25) collected from coastal areas of vegetable production in Togo. Analytical methods included solvent extraction of the insecticide residues and their subsequent quantification using GC-ECD. δ-HCH, heptachlor epoxide, 4,4-DDE, endosulphan (α, β and sulphate), lambda-cyalothrin and chlorpyrifos were found in the soil samples with concentrations that varied from non-detectable (ND) to 26.93 μg kg?1 dry weight. For water samples, heptachlor epoxide, 2,4-DDD, 4,4-DDD, 4,4-DDE and endosulphan (α, β, and sulphate) were found at contamination levels that varied from ND to 0.116 μg L?1. The concentration of insecticide residues detected in the water samples was below the limits set by the World Health Organization (WHO) and also by the European Union (EU), with the exception of the concentration of endosulphan sulphate at the Aného site, which was 0.116 μg L?1.  相似文献   

11.
Supervised field trials were conducted at four different agro-climatic locations of India to evaluate the dissipation pattern and risk assessment of spiromesifen on tomato. Spiromesifen 240 SC was sprayed on tomato at 150 and 300 g a.i.?ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10 and 15 days after treatment and soil at 15 days after treatment. Quantification of residues was done on gas chromatograph–mass spectrophotometer in selective ion monitoring mode in the mass range of 271–274 (m/z). The limit of quantification of the method was found to be 0.05 mg kg?1, while the limit of determination was 0.015 mg kg?1. Residues were found below the LOQ of 0.05 mg kg?1 in 10 days at both the doses of application at all the locations. Spiromesifen dissipated with a half-life of 0.93–1.38 days at the recommended rate of application and 1.04–1.34 days at the double the rate of application. Residues of spiromesifen in soil were detectable level (<0.05 mg kg?1) after 15 days of treatment. A preharvest interval (PHI) of 1 day has been recommended on tomato on the basis of data generated under All India Network Project on Pesticide Residues. Spiromesifen 240 SC has been registered for its use on tomato by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of spiromesifen on tomato has been fixed by Food Safety Standard Authority of India, Ministry of Health and Family Welfare, Government of India as 0.3 μg/g after its risk assessment.  相似文献   

12.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

13.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

14.
A simple residue analytical method using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure for the determination of trifloxystrobin and its metabolite trifloxystrobin acid (CGA321113) in tomato and soil was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of detection were 0.0005 mg/kg for trifloxystrobin and 0.001 mg/kg for trifloxystrobin acid, respectively. The average recoveries in tomato and soil ranged from 73–99 % for trifloxystrobin and 75–109 % for trifloxystrobin acid, with relative standard deviations below 15 %. The method was then used to study the dissipation and residues in tomato and soil. The dissipation half-lives of trifloxystrobin in tomato were 2.9 days (Beijing) and 5.4 days (Shandong), while in soil were 1.9 days (Beijing) and 3.0 days (Shandong), respectively. The final results showed that the major residue compound was trifloxystrobin in tomato whereas it was its metabolite, trifloxystrobin acid, in soil. The final residues of total trifloxystrobin (including trifloxystrobin acid) were below the EU maximum residue limit of 0.5 mg kg?1 in tomato 3 days after the treatment.  相似文献   

15.
The paper exploits the development of novel, simple and sensitive methodology involving matrix solid phase dispersion (MSPD) and the comparison of MSPD with liquid-liquid extraction (LLE) for the evaluation of residual penoxsulam in soil and rice samples. Extracted samples were analyzed by high-performance liquid chromatography (HPLC) with ultraviolet detector at 230 nm. Both methods were optimized, considering different parameters, and under optimum conditions, the mean recoveries obtained were in the range of 85–104 % for MSPD and 78.8–90.7 % for LLE. Precision values expressed as relative standard deviation (RSD) were ≤10 for MSPD and ≤15 for LLE. Linearity for penoxsulam was in the range of 0.01–20 μg mL?1 with limits of detection and limits of quantification of 0.01 and 0.03 mg kg?1, respectively.  相似文献   

16.
The objective of this study was to determine the levels of 14 organochlorine pesticides (OCPs) in flathead mullet (Mugil cephalus) caught from the western Black Sea coast of Turkey. The fish samples were caught from five different locations of the western Black Sea coast of Turkey in August 2009. Organochlorine pesticides were extracted from the liver tissues, and then the levels of OCPs were measured using gas chromatography with an electron capture detector. Organochlorine pesticides were detected in all locations. The levels of total OCPs in fish samples ranged between 0.224 and 1.103 μg g?1 dry weight in the western Black Sea coast of Turkey. DDT, beta-HCH, and endosulfan I were the dominant OCPs in the fish samples. The levels of DDT in fish samples ranged between 0.081 and 0.186 μg g?1 dry weight. The levels of total HCH in fish samples ranged between 0.007 and 0.376 μg g?1 dry weight in the western Black Sea coast of Turkey. Although the usage of OCPs was banned in Turkey, the results of this study clearly indicated the presence of OCPs in the western Black Sea coast of Turkey and exposure of living organisms to these chemicals.  相似文献   

17.
The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from l-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha?1). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha?1, persists for 20 days in both the soils. Overall, higher concentrations (5.0–10.0 kg ha?1) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities.  相似文献   

18.
The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO4 2?, PO4 2?, CO3 2?) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities.  相似文献   

19.
Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1–4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×107 years?1 (about USD 7.08×106 years?1). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15–25° to orchards), BMP2 (implementing no tillage on arable land with slopes less than 15°), and BMP5 (0.8-fold less than that of 2010).  相似文献   

20.
States may protect coral reefs using biological water quality standards outlined by the Clean Water Act. This requires biological assessments with indicators sensitive to human disturbance and regional, probability-based survey designs. Stony coral condition was characterized on a regional scale for the first time in the nearshore waters of the US Virgin Islands (USVI). Coral composition, abundance, size, and health were assessed at 66 stations in the St. Croix region in fall 2007 and at 63 stations in the St. Thomas and St. John region in winter 2009. Indicators were chosen for their sensitivity to human disturbance. Both surveys were probability-based (random) designs with station locations preselected from areas covered by hardbottom and coral reef substrate. Taxa richness was as high as 21 species but more than half the area of both regions exhibited taxa richness of <10 species in the 25 m2 transect area. Coral density was as high as 5 colonies m?2 but more than half the area of both regions had <2 colonies m?2. Both regions showed similar dominant species based on frequency of occurrence and relative abundance. Because of large colony sizes, Montastrea annularis provided more total surface area and live surface area than more abundant species. The surveys establish baseline regional conditions and provide a foundation for long-term regional monitoring envisioned by the USVI Department of Planning and Natural Resources. The probabilistic sampling design assures the data can be used in Clean Water Act reporting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号