首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
• Ceramic membrane filtration showed high performance for surface water treatment. • PTC pre-coagulation could enhance ceramic membrane filtration performance. • Ceramic membrane fouling was investigated by four varied mathematical models. • PTC pre-coagulation was high-effective for ceramic membrane fouling control. Application of ceramic membrane (CM) with outstanding characteristics, such as high flux and chemical-resistance, is inevitably restricted by membrane fouling. Coagulation was an economical and effective technology for membrane fouling control. This study investigated the filtration performance of ceramic membrane enhanced by the emerging titanium-based coagulant (polytitanium chloride, PTC). Particular attention was paid to the simulation of ceramic membrane fouling using four widely used mathematical models. Results show that filtration of the PTC-coagulated effluent using flat-sheet ceramic membrane achieved the removal of organic matter up to 78.0%. Permeate flux of ceramic membrane filtration reached 600 L/(m2·h), which was 10-fold higher than that observed with conventional polyaluminum chloride (PAC) case. For PTC, fouling of the ceramic membrane was attributed to the formation of cake layer, whereas for PAC, standard filtration/intermediate filtration (blocking of membrane pores) was also a key fouling mechanism. To sum up, cross-flow filtration with flat-sheet ceramic membranes could be significantly enhanced by titanium-based coagulation to produce both high-quality filtrate and high-permeation flux.  相似文献   

2.
● The fouling is summarized based on ceramic membrane performance and pollutants. ● The current research methods and theoretical models are summarized. ● The membrane fouling control methods and collaborative technology are reviewed. Membrane separation, as an important drinking water treatment technology, has wide applications. The remarkable advantages of ceramic membranes, such as chemical stability, thermal stability, and high mechanical strength, endow them with broader prospects for development. Despite the importance and advantages of membrane separation in water treatment, the technique has a limitation: membrane fouling, which greatly lowers its effectiveness. This is caused by organics, inorganic substances, and microorganisms clogging the pore and polluting the membrane surface. The increase in membrane pollution greatly lowers purification effectiveness. Controlling membrane fouling is critical in ensuring the efficient and stable operation of ceramic membranes for water treatment. This review analyzes four mechanisms of ceramic membrane fouling, namely complete blocking, standard blocking, intermediate blocking, and cake filtration blocking. It evaluates the mechanisms underlying ceramic membrane fouling and summarizes the progress in approaches aimed at controlling it. These include ceramic membrane pretreatment, ceramic membrane surface modification, membrane cleaning, magnetization, ultrasonics, and nanobubbles. This review highlights the importance of optimizing ceramic membrane preparation through further research on membrane fouling and pre-membrane pretreatment mechanisms. In addition, combining process regulations with ceramic membranes as the core is an important research direction for ceramic membrane-based water treatment.  相似文献   

3.
• Effects of metabolic uncoupler TCS on the performances of GDMBR were evaluated. • Sludge EPS reduced and transformed into dissolved SMP when TCS was added. • Appropriate TCS increased the permeability and reduced cake layer fouling. • High dosage aggravated fouling due to compact cake layer with low bio-activity. The gravity-driven membrane bioreactor (MBR)system is promising for decentralized sewage treatment because of its low energy consumption and maintenance requirements. However, the growing sludge not only increases membrane fouling, but also augments operational complexities (sludge discharge). We added the metabolic uncoupler 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to the system to deal with the mentioned issues. Based on the results, TCS addition effectively decreased sludge ATP and sludge yield (reduced by 50%). Extracellular polymeric substances (EPS; proteins and polysaccharides) decreased with the addition of TCS and were transformed into dissolved soluble microbial products (SMPs) in the bulk solution, leading to the break of sludge flocs into small fragments. Permeability was increased by more than two times, reaching 60–70 L/m2/h bar when 10–30 mg/L TCS were added, because of the reduced suspended sludge and the formation of a thin cake layer with low EPS levels. Resistance analyses confirmed that appropriate dosages of TCS primarily decreased the cake layer and hydraulically reversible resistances. Permeability decreased at high dosage (50 mg/L) due to the release of excess sludge fragments and SMP into the supernatant, with a thin but more compact fouling layer with low bioactivity developing on the membrane surface, causing higher cake layer and pore blocking resistances. Our study provides a fundamental understanding of how a metabolic uncoupler affects the sludge and bio-fouling layers at different dosages, with practical relevance for in situ sludge reduction and membrane fouling alleviation in MBR systems.  相似文献   

4.
● Fundamentals of membrane fouling are comprehensively reviewed. ● Contribution of thermodynamics on revealing membrane fouling mechanism is summarized. ● Quantitative approaches toward thermodynamic fouling mechanisms are deeply analyzed. ● Inspirations of thermodynamics for membrane fouling mitigation are briefly discussed. ● Research prospects on thermodynamics and membrane fouling are forecasted. Membrane technology is widely regarded as one of the most promising technologies for wastewater treatment and reclamation in the 21st century. However, membrane fouling significantly limits its applicability and productivity. In recent decades, research on the membrane fouling has been one of the hottest spots in the field of membrane technology. In particular, recent advances in thermodynamics have substantially widened people’s perspectives on the intrinsic mechanisms of membrane fouling. Formulation of fouling mitigation strategies and fabrication of anti-fouling membranes have both benefited substantially from those studies. In the present review, a summary of the recent results on the thermodynamic mechanisms associated with the critical adhesion and filtration processes during membrane fouling is provided. Firstly, the importance of thermodynamics in membrane fouling is comprehensively assessed. Secondly, the quantitative methods and general factors involved in thermodynamic fouling mechanisms are critically reviewed. Based on the aforementioned information, a brief discussion is presented on the potential applications of thermodynamic fouling mechanisms for membrane fouling control. Finally, prospects for further research on thermodynamic mechanisms underlying membrane fouling are presented. Overall, the present review offers comprehensive and in-depth information on the thermodynamic mechanisms associated with complex fouling behaviors, which will further facilitate research and development in membrane technology.  相似文献   

5.
横向流超滤膜污染动力学模型   总被引:1,自引:0,他引:1  
王晓昌  王锦 《环境化学》2002,21(6):552-557
从超滤过程中面滤饼层内对流传输、反向传输和颗粒积累的质量平衡关系出发,建立了描述渗透通量随时间变化关系的横向流超滤膜污染动力学模型,该模型将通常难以确定的滤饼层比阻和反向扩散系数包含在两个经验参数a,b中,通过简单的实验确定参数值后,即可用于横向流超滤过程的数学模拟,模拟计算结果与实验实测数据比较接近,且从理论上说明了横向流超滤从非平衡到最终平衡过渡的原理以及半透膜压,膜面剪切率对渗透通量的影响。  相似文献   

6.
The UF membrane fouling by down- and up-flow BAC effluents were compared. Up-flow BAC effluent fouled the membrane faster than down-flow BAC effluent. The combined effects dominated irreversible fouling. The extent of fouling exacerbated by inorganic particles was higher. The TMP, permeate flux, and normalized membrane flux during 21 days of UF of DBAC and UBAC effluents. Fouling during ultrafiltration of down- and up-flow biological activated carbon effluents was investigated to determine the roles of polysaccharides, proteins, and inorganic particles in ultrafiltration membrane fouling. During ultrafiltration of down- flow biological activated carbon effluent, the trans-membrane pressure was≤26 kPa and the permeate flux was steady at 46.7 L?m2?h1. However, during ultrafiltration of up-flow biological activated carbon effluent, the highest trans-membrane pressure was almost 40 kPa and the permeate flux continuously decreased to 30 L?m2?h1. At the end of the filtration period, the normalized membrane fluxes were 0.88 and 0.62 for down- and up-flow biological activated carbon effluents, respectively. The membrane removed the turbidity and polysaccharides content by 47.4% and 30.2% in down- flow biological activated effluent and 82.5% and 22.4% in up-flow biological activated carbon effluent, respectively, but retained few proteins. The retention of polysaccharides was higher on the membrane that filtered the down- flow biological activated effluent compared with that on the membrane that filtered the up-flow biological activated carbon effluent. The polysaccharides on the membranes fouled by up-flow biological activated carbon and down- flow biological activated effluents were spread continuously and clustered, respectively. These demonstrated that the up-flow biological activated carbon effluent fouled the membrane faster. Membrane fouling was associated with a portion of the polysaccharides (not the proteins) and inorganic particles in the feed water. When there was little difference in the polysaccharide concentrations between the feed waters, the fouling extent was exacerbated more by inorganic particles than by polysaccharides.  相似文献   

7.
• A pilot study was conducted for drinking water treatment using loose NF membranes. • The membranes had very high rejection of NOM and medium rejection of Ca2+/Mg2+. • Organic fouling was dominant and contribution of inorganic fouling was substantial. • Both organic and inorganic fouling had spatial non-uniformity on membrane surface. • Applying EDTA at basic conditions was effective in removing membrane fouling. Nanofiltration (NF) using loose membranes has a high application potential for advanced treatment of drinking water by selectively removing contaminants from the water, while membrane fouling remains one of the biggest problems of the process. This paper reported a seven-month pilot study of using a loose NF membrane to treat a sand filtration effluent which had a relatively high turbidity (~0.4 NTU) and high concentrations of organic matter (up to 5 mg/L as TOC), hardness and sulfate. Results showed that the membrane demonstrated a high rejection of TOC (by>90%) and a moderately high rejection of two pesticides (54%–82%) while a moderate rejection of both calcium and magnesium (~45%) and a low rejection of total dissolved solids (~27%). The membrane elements suffered from severe membrane fouling, with the membrane permeance decreased by 70% after 85 days operation. The membrane fouling was dominated by organic fouling, while biological fouling was moderate. Inorganic fouling was mainly caused by deposition of aluminum-bearing substances. Though inorganic foulants were minor contents on membrane, their contribution to overall membrane fouling was substantial. Membrane fouling was not uniform on membrane. While contents of organic and inorganic foulants were the highest at the inlet and outlet region, respectively, the severity of membrane fouling increased from the inlet to the outlet region of membrane element with a difference higher than 30%. While alkaline cleaning was not effective in removing the membrane foulants, the use of ethylenediamine tetraacetate (EDTA) at alkaline conditions could effectively restore the membrane permeance.  相似文献   

8.
CNT-PVA membrane was fabricated and compared with polymeric membranes. The separation performance was evaluated by homemade and cutting fluid emulsions. The three membranes show similar oil retention rates. CNT-PVA membranes have higher permeation fluxes compared with polymeric membranes. CNT-PVA membrane shows higher fouling resistance. Membrane separation is an attractive technique for removal of emulsified oily wastewater. However, polymeric membranes which dominate the current market usually suffer from severe membrane fouling. Therefore, membranes with high fouling resistance are imperative to treat emulsified oily wastewater. In this study, carbon nanotube-polyvinyl alcohol (CNT-PVA) membrane was fabricated. And its separation performance for emulsified oily wastewater was compared with two commercial polymeric membranes (PVDF membrane and PES membrane) by filtration of two homemade emulsions and one cutting fluid emulsion. The results show that these membranes have similar oil retention efficiencies for the three emulsions. Whereas, the permeation flux of CNT-PVA membrane is 1.60 to 3.09 times of PVDF membrane and 1.41 to 11.4 times of PES membrane, respectively. Moreover, after five consecutive operation circles of filtration process and back flush, CNT-PVA membrane can recover 62.3% to 72.9% of its initial pure water flux. However, the pure water flux recovery rates are only 24.1% to 35.3% for PVDF membrane and 6.0% to 26.3% for PES membrane, respectively. Therefore, CNT-PVA membrane are more resistant to oil fouling compared with the two polymeric membranes, showing superior potential in treatment of emulsified oily wastewater.  相似文献   

9.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   

10.
The evolution of activated sludge settleability and its relationship to membrane fouling in a submerged membrane bioreactor were studied at a lab-scale equipment fed with synthetic wastewater. It was found that sludge volume index (SVI) gradually increased and the sludge settleability was reduced, which was caused by the propagation of filamentous bacteria. With increasing SVI, the average increasing rate of trans-membrane pressure increased, the stable filtration period was shortened, and the two stages (smooth stage and accelerating stage) of the trans-membrane pressure were more obvious. At the same time, the increasing rate of trans-membrane pressure at the smooth stage decreased and the rate at the accelerating stage increased with SVI, respectively. The observation by using scanning electronic microscopes showed the cake layer with loose structure and large thickness formed on the membrane surface due to the appearance of filamentous bacteria and high SVI in sludge. Influence of the sludge settleability on the trans-membrane pressure was related to the structure and thickness of the cake layer on the membrane.  相似文献   

11.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   

12.
High-pressure membrane process is one of the cost-effective technologies for the treatment of groundwater containing excessive dissolved solids. This paper reports a pilot study in treating a typical groundwater in Huaibei Plain containing excessive sodium, sulfate and fluoride ions. Three membrane systems were set up and two brands of reverse osmosis (RO), four low-pressure RO (LPRO) and one tight nanofiltration (NF) membranes were tested under this pilot study. An apparent recovery rate at about 75% was adopted. Cartridge filtration, in combination with dosing antiscalent, was not sufficient to reduce the fouling potential of the raw water. All RO and LPRO systems (except for the two severely affected by membrane fouling) demonstrated similar rejection ratios of the conductivity (~98.5%), sodium (~98.5%) and fluoride (~99%). Membrane fouling substantially reduced the rejection performance of the fouled membranes. The tight NF membrane also had a good rejection on conductivity (95%), sodium (94%) and fluoride (95%). All membranes rejected sulfate ion almost completely (more than 99%). The electricity consumptions for the RO, LPRO and NF systems were 1.74, 1.10 and 0.72 kWh?m-3 treated water, respectively. The estimated treatment costs by using typical RO, LPRO and tight NF membrane systems were 1.21, 0.98 and 0.96 CNY?m-3 finished water, respectively. A treatment process consisting of either LPRO or tight NF facilities following multi-media filtration was suggested.  相似文献   

13.
The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the effective pore size distribution (effective PSD) and effective molecular weight cut off (effective MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the effective PSD and effective MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.  相似文献   

14.
• A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.  相似文献   

15.
以膜生物反应器(MBR)处理模拟生活废水为研究体系,考察曝气强度对系统污染物去除效果、脱氢酶活性、胞外聚合物(EPS)组分和含量、Zeta电位、污泥粒径及跨膜压差等的影响.结果表明,随着曝气强度降低,COD去除率变化不大,均大于94.0%,脱氢酶活性明显降低,VSS/SS比值下降;污泥LB-EPS增加,Zeta电位降低,污泥平均体积粒径减小,膜通量下降速率增大.曝气强度为800—400 L.m-.2h-1的条件下,曝气产生的水力剪切力不是影响污泥粒径大小的主导因素,污泥Zeta电位则起着决定作用,但水力剪切力有利于缓解膜污染.  相似文献   

16.
Four NF membranes were compared regarding arsenate rejection and their properties. Rejection of arsenate had no relationship with membrane pore size. A more negative surface charge was favorable for arsenate rejection at neutral pH. A severe membrane fouling could lead to a great reduction of arsenic rejection. Nanofiltration (NF) has a great potential in removing arsenate from contaminated water. The performance including arsenate rejection, water permeability and resistance to fouling could however differ substantially among NF membranes. This study was conducted to investigate the influence of membrane pore size and surface properties on these aspects of membrane performance. Four fully-aromatic NF membranes with different physicochemical properties were adopted for this study. The results showed that surface charge, hydrophobicity, roughness and pore size could affect water permeability and/or arsenate rejection considerably. A more negative surface charge was desirable to enhance arsenate rejection rates. NF90 and a non-commercialized membrane (M#1) demonstrated the best performance in terms of arsenate rejection and water permeability. The M#1 membrane showed less membrane fouling than NF90 when used for filtration of real arsenic-containing groundwater. This was mainly due to its distinct chemical composition and surface properties. A severe membrane fouling could lead to a substantial reduction of arsenic rejection. The M#1 membrane showed the best performance, which indicated that membrane modification could indeed enhance the overall membrane performance for water treatment.  相似文献   

17.
● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared. ● SACNT membranes achieved smoother and more uniform structures. ● SACNT membranes have inert chemistry and unique nonpolar wetting feature. ● SACNT membranes exhibit superior separation and antifouling capabilities. ● SACNT membranes achieved superior oil/water separation efficiency. Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.  相似文献   

18.
• Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.  相似文献   

19.
斜生栅藻暴露于全氟辛酸(PFOA)中,其细胞膜特性可通过不同荧光染料染色的荧光信号变化来反映.应用流式细胞仪检测荧光信号,研究了PFOA对斜生栅藻细胞膜的完整性、选择透过性和膜电位指标的影响效应.实验结果显示,全氟辛酸对表征细胞膜完整性的碘化丙啶(PI)染料荧光强度起到显著刺激作用,栅藻细胞膜受损几率随暴露浓度升高呈现上升趋势;低暴露浓度下栅藻细胞膜选择透过性增强,但在高浓度暴露下这一细胞膜特性受到明显抑制,具体表现为表征酯酶活性的二乙酸荧光素(FDA)荧光强度出现先升后降的变化;与FDA荧光强度变化趋势相反,反映膜电位的碘代3,3’-二己氧基羰花青(DIOC6(3))荧光强度则先降后升,预示高浓度PFOA暴露将导致细胞膜处于异常的生理状态.  相似文献   

20.
Phosphorus removal was enhanced effectively by dosing aluminum sulfate and effluent phosphorus concentration was lower than 0.5 mg/L. Sludge activity was not inhibited but improved slightly with addition of aluminum sulfate. EPS concentrations both in mixed liquid and on membrane surface were decreased, contributing to the effective mitigation of membrane fouling. To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH4+-N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号