首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   

2.
Loss of forest cover is a likely consequence of climate change in many parts of the world. To test the vulnerability of eucalypt forests in Australia’s island state of Tasmania, we modelled tree canopy cover in the period 2070–2099 under a high-emission scenario using the current climate–canopy cover relationship in conjunction with output from a dynamically downscaled regional climate model. The current climate–canopy cover relationship was quantified using Random Forest modelling, and the future climate projections were provided by three dynamically downscaled general circulation model (GCM) simulations. Three GCMs were used to show a range of projections for the selected scenario. We also explored the sensitivity of key endemic and non-endemic Tasmanian eucalypts to climate change. All GCMs suggested that canopy cover should remain stable (proportional cover change <10 %) across ~70 % of the Tasmanian eucalypt forests. However, there were geographic areas where all models projected a decline in canopy cover due to increased summer temperatures and lower precipitation, and in addition, all models projected an increase in canopy cover in the coldest part of the state. The model projections differed substantially for other areas. Tasmanian endemic species appear vulnerable to climate change, but species that also occur on the mainland are likely to be less affected. Given these changes, restoration and carbon sequestration plantings must consider the species and provenances most suitable for future, rather than present, climates.  相似文献   

3.
Climate change has in the past led to shifts in vegetation patterns; in a future, warmer climate due to enhanced greenhouse-gas concentrations, vegetation is also likely to be highly responsive to such warming. Mountain regions are considered to be particularly sensitive to such changes. In this paper we present an approach to assess the impact of climate change on long-term vegetation plots at the high-elevation site of the Schynige Platte, 2000 m above sea level, in the Bernese Alps (Switzerland). Records of vegetation spanning the period from 1928 to today at two different sites, each with several plots, were considered. The observed change in the species composition was then related to changes in land use and climate. We used daily values of temperature, snow and precipitation from several high-elevation weather stations to conduct these analyses. The correlation between climate and vegetation patterns revealed that species that prefer low thermal conditions move out of the plots, i.e., their frequency of occurrence is negatively correlated with the average number of degree-days over the last six decades. On the other hand, species with higher thermal demands are seen to be invading the plots, i.e., their frequency of occurrence is positively correlated to the average number of degree-days. Nutrient changes – though independent from climate – also play an important role in the observed shifts in species. Received: 20 June 1999 · Accepted: 14 January 2000  相似文献   

4.
Tourism is a vital sector of Cyprus economy, attracting millions of tourists every year and providing economic growth and employment for the country. The aim of this study was to investigate the impacts of projected climate change in the tourism industry in Cyprus (Republic of Cyprus) using both “Tourism Climate Index” (TCI) and “Beach Climate Index” (BCI). TCI refers to tourism activities mainly related to sightseeing, nature-based tourism, and religious tourism etc., while BCI represents beach tourism that constitutes 85 % of tourism activities in Cyprus. The projections of climate change impacts in tourism are performed for 2071–2100 period, using regional climate model output employing the A1B greenhouse gas emissions scenario. The 1961–1990 period is used as the control run to compare the respective results of the future projections. The significant warming anticipated in the distant future (increases in annual and summer temperatures close to 4 °C) will have adverse impacts on Cyprus tourism industry regarding sightseeing tourism. TCI results for the distant future period show only acceptable conditions for general tourism activities during summer in contrast with the good/very good conditions in the present climate. Conversely, this type of tourism seems to be benefited in shoulder seasons, i.e., during spring and autumn; TCI and hence tourist activities improve in the distant future in relation to the present climate. On the other hand, concerning beach tourism, future projections indicate that it will not be negatively affected by future climate change and any changes will be positive.  相似文献   

5.
Climate changes in the Mediterranean region, related to a significant increase in temperature and changes in precipitation patterns, can potentially affect local economies. Agriculture and tourism are undoubtedly the most important economic sources for Greece and these may be more strongly affected by changing future climate conditions. Climate change and their various negative impacts on human life are also detected in their environment; hence this study deals with implications, caused by changing climate, in urban and forest areas. Potential changes for the mid-twenty-first century (2021–2050) are analysed using a high-resolution regional climate model. This paper presents relevant climatic indices, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country. The results provide insights into particular regions of the Greek territory that may undergo substantial impacts due to climate change. It is concluded that the duration of dry days is expected to increase in most of the studied agricultural regions. Winter precipitation generally decreases, whereas an increase in autumn precipitation is projected in most areas. Changing climate conditions associated with increased minimum temperatures (approximately 1.3°C) and decreased winter precipitation by 15% on average suggest that the risk for forest fires is intensified in the future. In urban areas, unpleasantly high temperatures during day and night will increase the feeling of discomfort in the citizens, while flash floods events are expected to occur more frequently. Another impact of climate change in urban regions is the increasing energy demand for cooling in summer. Finally, it was found that continental tourist areas of the Greek mainland will more often face heatwave episodes. In coastal regions, increased temperatures especially at night in combination with high levels of relative humidity can lead to conditions that are nothing less than uncomfortable for foreigners and the local population. In general, projected changes associated with temperature have a higher degree of confidence than those associated with precipitation.  相似文献   

6.
This paper reviews scientific and gray literature addressing climate change vulnerability and adaptation in the Inuvialuit Settlement Region (ISR) in the western Canadian Arctic. The review is structured using a vulnerability framework, and 420 documents related directly or indirectly to climate change are analyzed to provide insights on the current state of knowledge on climate change vulnerability in the ISR as a basis for supporting future research and long-term adaptation planning in the region. The literature documents evidence of climate change in the ISR which is compromising food security and health status, limiting transportation access and travel routes to hunting grounds, and damaging municipal infrastructure. Adaptations are being employed to manage changing conditions; however, many of the adaptations being undertaken are short term, ad-hoc, and reactive in nature. Limited long-term strategic planning for climate change is being undertaken. Current climate change risks are expected to continue in the future with further implications for communities but less is known about the adaptive capacity of communities. This review identifies the importance of targeted vulnerability research that works closely with community members and decision makers to understand the interactions between current and projected climate change and the factors which condition vulnerability and influence adaptation. Research gaps are identified, and recommendations for advancing adaptation planning are outlined.  相似文献   

7.
The frequency, duration, and intensity of cold waves are expected to decrease in the near future under the changing climate. However, there is a lack of understanding on future mortality related to cold waves. The present study conducted a large-scale national projection to estimate future mortality attributable to cold waves during 1960–2050 in 209 US cities. Cold waves were defined as two, three, or at least four consecutive days with daily temperature lower than the 5th percentile of temperatures in each city. The lingering period of a cold wave was defined as the non-cold wave days within seven days following that cold wave period. First, with 168 million residents in 209 US cities during 1962–2006, we fitted over-dispersed Poisson regressions to estimate the immediate and lingering effects of cold waves on mortality and tested if the associations were modified by the duration of cold waves, the intensity of cold waves, and mean winter temperature (MWT). Then we projected future mortality related to cold waves using 20 downscaled climate models. Here we show that the cold waves (both immediate and lingering) were associated with an increased but small risk of mortality. The associations varied substantially across climate regions. The risk increased with the duration and intensity of cold waves but decreased with MWT. The projected mortality related to cold waves would decrease from 1960 to 2050. Such a decrease, however, is small and may not be able to offset the potential increase in heat-related deaths if the adaptation to heat is not adequate.  相似文献   

8.
Despite recent calls to limit future increases in the global average temperature to well below 2 °C, little is known about how different climatic thresholds will impact human society. Future warming trends have significant global food security implications, particularly for small island developing states (SIDS) that are recognized as being among the most vulnerable to global climate change. In the case of the Caribbean, any significant change in the region’s climate is likely to have significant adverse effects on the agriculture sector. This paper explores the potential biophysical impacts of a +?1.5 °C warming scenario on several economically important crops grown in the Caribbean island of Jamaica. Also, it explores differences to a >?2.0 °C warming scenario, which is more likely, if the current policy agreements cannot be complied with by the international community. We use the ECOCROP niche model to estimate how predicted changes in future climate could affect the growing conditions of several commonly cultivated crops from both future scenarios. We then discuss some key policy considerations for Jamaica’s agriculture sector, specifically related to the challenges posed to future adaptation pathways amidst growing climate uncertainty and complexity. Our model results show that even an increase less than +?1.5 °C is expected to have an overall negative impact on crop suitability and a general reduction in the range of crops available to Jamaican farmers. This observation is instructive as increases above the +?1.5 °C threshold would likely lead to even more irreversible and potentially catastrophic changes to the sustainability of Jamaica’s agriculture sector. The paper concludes by outlining some key considerations for future action, paying keen attention to the policy relevance of a +?1.5 °C temperature limit. Given little room for optimism with respect to the imminent changes that SIDS will need to confront in the near future, broad-based policy engagement by stakeholders in these geographies is paramount, irrespective of the climate warming scenario.  相似文献   

9.
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of ?1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the ‘most’ appropriate system when a review or upgrade of the network infrastructure is required.  相似文献   

10.
Universal two-child policy has been implemented since the end of 2015 in China. This policy is anticipated to bring a significant increase in the total population, with profound influences on the resources and environment in the future. This paper analyzes the changing dynamics of urban and rural population, and forecasts urban and rural population from 2016 to 2030 at national and provincial scale using a double log linear regression model. Drawing upon the results of these two predictions, the impact of the population policy change on Chinese resources consumption and environmental pollution are predicted quantitatively. Given the future total population maintains current levels on resources consumption and environmental emission, the additional demand of resources and environment demand for the new population is forecasted and compared against the capacity on supply side. The findings are as follows: after implementing the universal two-child policy, China’s grain, energy consumption, domestic water demand, and pollutant emissions are projected to increase at different rates across provinces. To meet the needs arising from future population growth, food and energy self-sufficiency rate will be significantly reduced in the future, while relying more on imports. Stability of the water supply needs to be improved, especially in Beijing, Henan, Jiangsu, Qinghai, and Sichuan where the gap in future domestic water demand is comparatively larger. Environmental protection and associated governing capability are in urgent need of upgrade not least due to the increasing pressure of pollution.  相似文献   

11.
Possible changes in the intensity of heavy precipitation events at the end of the twenty-first century over the Euro-Mediterranean region are investigated, using a subset of numerical climate simulations taking part to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). As a measure of the intensity associated with heavy precipitation events, we use the difference between the 99th and the 90th percentiles. Despite a slight tendency to underestimate the observed heavy precipitation intensity during summer and to overestimate it during winter, the considered CMIP5 models well represent the observed patterns of the defined 99th–90th percentile metric during both seasons for the 1997–2005 period over the Euro-Mediterranean region. Over the investigated domain, an increase of the width of the right tail of the precipitation distribution is projected in a warmer climate, even over regions where nearly the entire precipitation distribution becomes dryer. This is the case of the European domain within the 45N–55N belt.  相似文献   

12.
2015年底,我国全面放开了二孩政策,势必对我国的人口总量和增长态势产生深刻影响,进而影响我国的资源需求和环境压力。在采用队列元素法预测全面放开二孩后我国总人口及各省(市、自治区)人口的基础上,运用城乡人口比增长法预测未来城镇化水平,本文依据这两种预测结果系统探讨人口政策变动对我国资源消费、环境污染的定量预测和具体影响。假定未来的人均资源环境消耗量保持现状不变,按照预测的未来人口总量和增量,得出人口增长对我国资源环境的需求变动。通过计算新增的资源环境需求量,对比需求总量与我国的资源环境供给能力,进一步分析人口增长对资源环境各方面的压力大小。研究发现:全面放开二孩政策后,我国的粮食、生活用能源、生活用水、城乡建设用地的需求量和生活污染物排放量均逐年递增,但变化速率有所差异。为满足未来人口增长所产生的需求,粮食和能源的自给率明显降低,未来将需要更多地依赖进口。全国的供水能力和保障水平急需提高,其中北京、河南、江苏、青海、四川的现状供水能力与未来生活用水需求差距较大。各省建设用地需求差异明显,吉林、湖北、山东、四川、江苏、湖南、新疆、广东、黑龙江、贵州等省市的城市建设用地新增需求量将快速释放,但已有的建设用地储备无法满足预测需求。生活污染物的治理压力加大,环境保护与治理能力应该继续加强。  相似文献   

13.
Elderly people are known to be more vulnerable than the general population to a range of weather-related hazards such as heat waves, icy conditions and cold periods. In the Nordic region, some of these hazards are projected to change their frequency and intensity in the future, while at the same time strong increases are projected in the proportion of elderly in the population. This paper reports results from three projects studying the potential impacts of climate change on elderly people in the Nordic region. An interactive web-based tool has been developed for mapping and combining indicators of climate change vulnerability of the elderly, by municipality, across three Nordic countries: Finland, Norway and Sweden. The tool can also be used for projecting temperature-related mortality in Finland under different projections of future climate. The approach to vulnerability mapping differs from most previous studies in which researchers selected the indicators to combine into an index. Here, while researchers compile data on indicators that can be accessed in the mapping tool, the onus is on the users of the tool to decide which indicators are of interest and whether to map them individually or as combined indices. Stakeholders with responsibility for the care and welfare of the elderly were engaged in the study through interviews and a workshop. They affirmed the usefulness of the prototype mapping tool for raising awareness about climate change as a potential risk factor for the elderly and offered suggestions on potential refinements, which have now been implemented. These included adding background information on possible adaptation measures for ameliorating the impacts of extreme temperatures, and improved representation of uncertainties in projections of future exposure and adaptive capacity.  相似文献   

14.
居民消费碳排放是国内外温室气体排放研究的重要问题。利用1997~2010年上海市统计数据,分别采用改进的投入产出模型法、碳排放系数法核算了上海市居民间接和直接能源消费产生的碳排放,分析了上海市居民消费的碳排放变化、居民消费碳排放的城乡差异、各部门对居民间接能源消费碳排放的贡献。结果表明:(1)1997~2010年上海市居民消费产生的碳排放呈逐年上升趋势,间接能源消费是居民消费的碳排放的主要来源,在居民消费碳排放总量中占有较大比重;(2)1997~2010年上海市城镇居民消费碳排放呈逐年上升,农村居民消费碳排放呈下降趋势,居民消费碳排放存在着显著的城乡差异;(3)14个部门对居民消费碳排放的贡献大小不同,其中文教卫生商务及其他服务、交通运输仓储及信息服务、食品制造及烟草加工业3个部门对城乡居民消费碳排放的贡献最大;(4)提高各部门能源利用效率、降低部门单位产出的碳排放、引导居民向低碳产品消费的转变是居民消费碳减排的有效措施。研究结果可为上海市居民生存碳排放的评估提供数据支持,为政府部门制定碳减排措施、引导居民低碳消费提供理论指导。  相似文献   

15.
近年来,江苏省社会经济进入新的发展期,在经济高速发展的背后是能源的高消耗以及温室气体的大量排放。根据江苏省实际情况,运用LEAP模型建立了JSLEAP模型,并采用情景分析的方法,根据影响江苏省能源需求的因素设定了参照情景和可持续发展情景两个情景,系统地、全面地对江苏省未来能源需求和碳排放的发展趋势进行了分析,并提出了江苏省中长期能源发展对策,对江苏省制定正确的能源发展规划、实现可持续发展具有重要意义。研究表明:在两种情景下江苏省未来能源需求总量将持续增加,直到2045年后才有所下降;居民生活、第一产业、第二产业、第三产业各部门能源需求情况都将有所变化;人均CO2排放量、单位GDP的CO2排放量都将降低。但是无论是能源需求或碳排放方面,可持续发展情景都优于参照情景  相似文献   

16.
Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here, we apply a recently developed methodology that circumvents the GCM limitation of coarse resolution in order to project future changes in aridity on small islands. These climate projections are combined with independent population projections associated with shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5 and 2 °C above pre-industrial levels. While we find that future population growth will dominate changes in projected freshwater stress especially toward the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. For several SIDS, particularly across the Caribbean region, a substantial fraction (~?25%) of the large overall freshwater stress projected under 2 °C at 2030 can be avoided by limiting global warming to 1.5 °C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5 and 2 °C and underscore the need for regionally specific analysis.  相似文献   

17.
A survey documenting how climate change is perceived, experienced, and responded to in the Canadian mining sector was administered to industry practitioners at the Prospectors & Developers Association of Canada annual meeting. Nine key findings from the survey are discussed: (1) The Canadian mining sector is sensitive to climate-related conditions. (2) Climate change is perceived to be having a negative impact on mining operations. (3) Companies are taking action to manage the current impacts. (4) Cost and uncertainty are commonly identified barriers to adapting to current climate change. (5) Future climate change is expected to have impacts for the industry. (6) Climate change projections are perceived as threats by the majority of respondents. (7) Despite the perceived threat, companies are not currently taking action to plan for future impacts. (8) Cost and uncertainty are commonly identified barriers to adapting to future climate change impacts. (9) The mining sector is currently making efforts to reduce greenhouse gas emissions. The survey is exploratory in nature, establishing a baseline for targeted research to assess in greater detail the vulnerability of mining to climate change.  相似文献   

18.
随着居民部门用能快速增长,各国都在致力于观察本国居民能源消费特征以减少碳排放,特别是发达国家。本文应用近30年的微观调查数据分析美国居民能源消费现状和趋势,为发展中国家提供一些借鉴意义。从总量上看,伴随着人口、家庭数量和建筑面积的上升,能源消费总量变化较小,趋于稳定;人均用能则呈下降趋势。从用能结构来看,以天然气和电力为主,2009年分别占比44%和41%;近30年来天然气占比小幅下降,电力占比上升明显;完善的天然气设施和电力服务体系使得能源可获得性高。从用途分类来看,取暖和家电占绝大比例,2009年分别占比41%和35%;取暖用能近30年来出现平缓下降趋势,燃料来源70%是天然气;家电设备用能占比明显上升,增长近1倍;制冷占比较小,近年出现小幅上升;热水用能则比较稳定。家庭炊事燃料以电力和天然气为主,2009年分别占比60%和34%。近30年,家用电器保有量和能源效率有显著提高。建筑用能方面,美国房屋服务时间长,后期建筑房屋在保温性能方面高于早期房屋,单位面积耗能下降。美国居民享受着较高水平的能源服务,能源消费总量在近30年没有明显变化,这和能源效率的提高有着密切关系;如完善的"能源之星"项目是一个强有力的措施,以及完善的能源统计制度为能源分析提供了有力的数据支撑。相比,中国存在居民炊事用能固体燃料占比较高、建筑服务周期短、建筑材料耗能比重大等问题。建议中国政府进一步完善能源统计制度、推行农村能源扶持项目和能源标识、加强建筑规划、落实建筑能耗标准。  相似文献   

19.
Small tropical islands are widely recognized as having high exposure and vulnerability to climate change and other natural hazards. Ocean warming and acidification, changing storm patterns and intensity, and accelerated sea-level rise pose challenges that compound the intrinsic vulnerability of small, remote, island communities. Sustainable development requires robust guidance on the risks associated with natural hazards and climate change, including the potential for island coasts and reefs to keep pace with rising sea levels. Here we review these issues with special attention to their implications for climate-change vulnerability, adaptation, and disaster risk reduction in various island settings. We present new projections for 2010–2100 local sea-level rise (SLR) at 18 island sites, incorporating crustal motion and gravitational fingerprinting, for a range of Intergovernmental Panel on Climate Change global projections and a semi-empirical model. Projected 90-year SLR for the upper limit A1FI scenario with enhanced glacier drawdown ranges from 0.56 to 1.01 m for islands with a measured range of vertical motion from ?0.29 to +0.10 m. We classify tropical small islands into four broad groups comprising continental fragments, volcanic islands, near-atolls and atolls, and high carbonate islands including raised atolls. Because exposure to coastal forcing and hazards varies with island form, this provides a framework for consideration of vulnerability and adaptation strategies. Nevertheless, appropriate measures to adjust for climate change and to mitigate disaster risk depend on a place-based understanding of island landscapes and of processes operating in the coastal biophysical system of individual islands.  相似文献   

20.
《国民经济和社会发展第十二个五年规划纲要》将能源消耗强度和CO2排放强度作为约束性指标。实现2020年单位GDP碳排放强度下降40-45%的自主减排目标是中国今后发展的战略性任务。"十一五"期间,中国以能源消费年均6.6%的增速支撑了国民经济年均11.2%的增长,累计节能量达到6.3亿t标煤,CO2减排量达到14.6亿t,为全球应对气候变化做出了积极贡献。但单位GDP的能耗强度和碳强度下降与温室气体排放总量的上升还将是中国当前和未来很长时期温室气体排放的主要特征。根据历史数据分析,GDP增长、经济结构、产业结构、能源结构等都会对中国的碳减排产生重要影响。GDP增速高必然呈现高能耗、高排放的特征。经济结构方面,影响能耗和碳排放的是GDP(最终需求)的组成变化,即消费、投资和净出口的变化。由于第二产业在国民经济中所占的较大比重以及重化工产业长期存在,除了继续依靠技术进步提高能源使用效率外,必须重视产业结构调整对降低碳排放强度的贡献。能源结构对节能和碳减排的影响集中体现在资源禀赋不平衡、供需分布不平衡、消费种类不平衡。文章提出实现碳减排目标,必须控制和达到以下关键指标:控制GDP增速在6-8%之间;调整出口结构,提升服务贸易比重至30%左右;提高第三产业比例至47%以上,控制高能耗工业比重在22%以下;提高非化石能源比重至15%。此外,实现碳减排目标还必须:充分认识碳减排对转方式、调结构的重要意义;切实加强对不同区域碳减排工作的分类指导;提前部署重大低碳技术和重点领域技术研发;大力倡导绿色低碳消费和生活方式等。研究表明,中国实现2020年CO2自主减排目标还需付出更大的努力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号