首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Commonly occurring natural events become natural disasters when they affect the population through death and injury, and/or through the destruction of natural and physical capital on which people rely for their livelihood and quality of life. Climate change plays a role in that it tends to increase the frequency and intensity of weather-related natural disasters. Additionally, climate change may put people at risk by influencing access to water, coastal flooding, disease and hunger, and leaving them with a more degraded environment, leading, in turn, to increased vulnerability. The purpose of this paper is to present a review and synthesis of the literature and case studies addressing differential impacts of climate change-related natural disasters on a society and its economy. Developed and developing countries show different vulnerabilities to natural disasters. Even within countries, impacts vary significantly across population and economic sectors. When losses from natural disasters are large, their cumulative effect can have notable macroeconomic impacts, which feed back to further pronounce existing income inequalities and lower income levels. Impacts tend to be most pronounced for women, the young and elderly, and people of ethnic or racial minorities.
María Eugenia IbarraránEmail:
  相似文献   

3.
Regional Siberian studies have already registered climate warming over the last several decades. We evaluated ongoing climate change in central Siberia between 1991 and 2010 and a baseline period, 1961–1990, and between 1991 and 2010 and Hadley 2020 climate change projections, represented by the moderate B1 and severe A2 scenarios. Our analysis showed that winters are already 2–3°C warmer in the north and 1–2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1–2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10–20% in the south, promoting local drying in already dry landscapes. Hot spots of possible forest shifts are modeled using our Siberian bioclimatic vegetation model and mountain vegetation model with respect to climate anomalies observed pre-2010 and predicted 2020 Hadley scenarios. Forests are predicted to shift northwards along the central Siberian Plateau and upslope in both the northern and southern mountains. South of the central Siberian Plateau, steppe advancement is predicted that was previously non-existent north of 56°N latitude. South of 56°N, steppe expansion is predicted in the dry environments of Khakasiya and Tyva. In the southern mountains, it is predicted that the lower tree line will migrate upslope due to increased dryness in the intermontane Tyvan basins. The hot spots of vegetation change that are predicted by our models are confirmed by regional literature data.  相似文献   

4.
Forecasting the likely economic losses arising from North Atlantic hurricanes is high on the agenda of both Caribbean and North American stakeholders. This paper develops a general equilibrium framework to conduct an impact assessment of climate change and hurricane formation. General equilibrium analysis accounts for not only primary effects but also feedback effects. The model simulations suggest that output losses occurring due to hurricanes are likely to have economy-wide effects. However, the rural economies of the region are likely to suffer the greatest (relative) effects. The findings of this study suggest that rural livelihoods should be mainstreamed in any adaptation initiatives adopted by the region. Ignoring these neighbourhood features in adaptation plans could negatively impact on poverty and unemployment in rural areas.  相似文献   

5.
Forage and more widely grassland systems are difficult to analyze in economic terms because a large proportion of what is produced is not marketed. Economic misestimation of these farm products may dramatically alter projected climate change impacts. This study estimates the economic value of grass and assesses the impact of climatic variations on grassland–livestock systems by taking various environmental and climatic factors into account. Accordingly, grass yield responses to nitrogen inputs (N-yield functions) have been simulated using the grassland biogeochemical PaSim model and then fed into the economic farm-type supply AROPAj model. We developed a computational method to estimate shadow prices of grass production, allowing us to better estimate the effects of climatic variability on grassland and crop systems. This approach has been used on a European scale under two Intergovernmental Panel on Climate Change climate scenarios (AR4 A2 and B1). Results show a significant change in land use over time. Accordingly, due to decreases in feed expenses, farmers may increase livestock, thereby increasing overall greenhouse gas emissions for all scenarios considered. As part of autonomous adaptation by farming systems, N-yield functions extending to pastures and fodders allow us to improve the model and to refine results when marketed and non-marketed crops are considered in a balanced way.  相似文献   

6.
Participatory modeling (PM) has become an essential concept in environmental impact assessment and planning in the field of water resources. In this paper, we focus on the use of PM to support the development of the integrated regional modeling system DANUBIA as a scientific concept to analyze the previously unknown impacts of global change, i.e., the combined effects of climate, demographic, economic, social and ecological change, on the Upper Danube Catchment (Germany). We use this case study to examine the specific conditions for PM in the field of complex integrated models on a regional scale. We describe the stepwise PM process and discuss the respective results, focusing on (1) the stakeholder dialogue’s contribution in supporting the development of new, complex modeling systems, particularly on a regional scale, (2) conditions of stakeholder involvement in issues related to the distant future, such as climate change impacts on regional water availability, and (3) limitations of PM and scientists’ motivation to carry out participatory research at all. We conclude that the PM process was not entirely successful in improving the scientific quality and practical applicability of the developed models because the process goals were manifold and overambitious, and the definition of the problem of “global change impacts on a regional scale” was too weak and uncertain to allow for a clear common objective of modelers and stakeholders. We claim that there is a lack of incentives for scientists, particularly natural scientists, to commit to PM activities.  相似文献   

7.
The purpose of this study was to investigate the climate change impacts, vulnerability and adaptive capacity of the electrical energy sector in Cyprus. Spatial vulnerability of the island was assessed using the degree-day indicator to investigate heating and cooling demands in the near future using daily temperature projections from regional climate models (RCMs). Using daily electrical energy consumption data for the present climate, an impact model linking consumption and temperature was constructed and this relationship was projected to the future climate using the data from the RCMs and assuming the same technology use. Our impact model results showed that for the period between November and April (‘cold period’), a decreasing trend in electrical energy consumption is evident due to warmer conditions in the near future, while for the period between May and October (‘warm period’), an increasing trend in electricity consumption is evident as warmer conditions dominate by 2050. Regarding the spatial vulnerability assessment, the cooling degree-day indicator testified that major increases in cooling demand, between 100 and 200 degree-days, are expected in inland and southern regions during the summer in the near future. In addition, increases of about 20–50 degree-days are anticipated during autumn. Conversely, energy demand for heating is projected to decrease during spring and winter, especially in the higher elevation parts of the island. More precisely, reductions of about 30–75 degree-days are projected during spring, while greater reductions of about 60–90 degree-days are expected during winter in heating demand, especially for in the near future. The ability of the energy sector to adapt and follow these changes was deemed to be satisfactory reducing the overall vulnerability of the sector to future climate change.  相似文献   

8.
In the Maghreb and North African regions, the interannual climate variability causes severe impacts on agriculture through long drought episodes. Impacts are expected to increase due to projected climate change. Decreasing water availability will have a direct impact on the agriculture sector and could endanger the socioeconomic development and social stability in Tunisia where rain-fed agriculture represents the main occupancy and means of subsistence for the large rural population.  相似文献   

9.
Sub-Saharan Africa has been portrayed as the most vulnerable region to the impacts of global climate change because of its reliance on agriculture which is highly sensitive to weather and climate variables such as temperature, precipitation, and light and extreme events and low capacity for adaptation. This article reviews evidence on the scope and nature of the climate change challenge; and assesses the impact of climate change on agriculture and food security in Sub-Saharan Africa. From the review, it is apparent that the climate in Africa is already exhibiting significant changes, evident by changes in average temperature, change in amount of rainfall and patterns and the prevalence of frequency and intensity of weather extremes. The review also revealed that although uncertainties exist with regards to the magnitude of impacts, climate will negatively affect agricultural production in Sub-Saharan Africa. Specifically, as result of current and expected climate change, the area suitable for agriculture, the length of growing seasons and yield potential, particularly along the margins of semi-arid and arid areas, are expected to decrease. These impacts will affect all components of food security: food availability, food accessibility, food utilisation and food stability and hence increase the risk of hunger in the region. The review thus confirms the general consensus that Sub-Saharan Africa is the most vulnerable region to climate change. It suggests that, policymakers and development agencies should focus on formulating and implementing policies and programmes that promote farm level adaptation strategies currently being practiced by farmers across the region.  相似文献   

10.
The consequences of climate change on smallholder farms are locally specific and difficult to quantify because of variations in farming systems, complexity of agricultural and non-agricultural livelihood activities and climate-related vulnerability. One way to better understand the issues is to learn from the experiences of farmers themselves. Thus, this study aimed to better understand rainfed upland cropping systems in NW Cambodia and to identify practical, social and economic constraints to adoption of known climate adaptation options applicable to local agro-ecosystems. The study also sought to document the climate change perceptions and adaptation options employed by farmers to mitigate the climate risks. A household survey was conducted in the districts of Sala Krau and Samlout in North-west Cambodia in 2013 where 390 representatives of households were randomly selected for interviews, group discussions and field observations. The majority of respondents perceived that changes had occurred in the rainfall pattern such as a later start to the monsoon season, decreasing annual rainfall, increasing frequencies of drought and dry spells, and warmer temperatures. Farmers reported reductions in crop yields of 16–27 % over the five-year period of 2008–2012. However, these reductions were not evident in provincial data for the same period. Farmers claimed climate impacts resulted in significant yield reductions, but they appear not to have an effective strategy to adapt to the changes in climate. Further regional research is required to refine climate change adaptation strategies for rainfed upland cropping systems in Cambodia.  相似文献   

11.
Analyses of Sahel regional and country-specific rainfall and temperature time series derived from a fixed subset of stations show the well-documented large-scale decreasing trend in rainfall that occurred between 1970 and 2000 and also, an increasing trend in summertime maximum and wintertime minimum temperatures. The evolution of summertime mean maximum temperature is almost opposite to that of rainfall, and a significant correlation is observed between the evolution of this quantity and millet yields, in comparison with correlation with summertime rainfall. It appears that quantifying future vulnerability of the Sahel zone to climate change is rather difficult because climate models have not in general shown yet a satisfactory reproduction of the observed climate variability of this area.  相似文献   

12.
13.
Climate change impact on countrywide water balance in Bolivia   总被引:1,自引:0,他引:1  
There is increasing concern about the ongoing reduction in water supplies in the tropical Andes due to climate change effects such as glacier/snow melting resulting from rising air temperatures. In addition, extreme events and population growth are already directly affecting life and water renewability in the country. A countrywide integrated national plan for improving basin-scale water management in Bolivia is needed to assure water availability for agriculture, industry, mining, and human consumption. This study aims to provide a modeling tool to assess Bolivia’s past, current, and future water availability and identify basins at risk of water deficits. The Soil Water Assessment Tool was used to simulate the monthly water balance from 1997 to 2008, as well as the water balance projected to 2050 for the entire country. It considers possible changes in air temperatures and precipitation proposed by 17 Global Circulation Models as well as carbon dioxide projections derived from the Special Report Emission Scenario. Overall, model results were close to satisfactory compared to observations, with some exceptions due to lack of information for expanding the timeline and improving calibration. Based on the calculation of three hydrologic indicators, the study identifies basins that would be the most susceptible to water deficits for a baseline from 1997 to 2008, and in the event of the projected climate change, to 2050.  相似文献   

14.
Tourism is a vital sector of Cyprus economy, attracting millions of tourists every year and providing economic growth and employment for the country. The aim of this study was to investigate the impacts of projected climate change in the tourism industry in Cyprus (Republic of Cyprus) using both “Tourism Climate Index” (TCI) and “Beach Climate Index” (BCI). TCI refers to tourism activities mainly related to sightseeing, nature-based tourism, and religious tourism etc., while BCI represents beach tourism that constitutes 85 % of tourism activities in Cyprus. The projections of climate change impacts in tourism are performed for 2071–2100 period, using regional climate model output employing the A1B greenhouse gas emissions scenario. The 1961–1990 period is used as the control run to compare the respective results of the future projections. The significant warming anticipated in the distant future (increases in annual and summer temperatures close to 4 °C) will have adverse impacts on Cyprus tourism industry regarding sightseeing tourism. TCI results for the distant future period show only acceptable conditions for general tourism activities during summer in contrast with the good/very good conditions in the present climate. Conversely, this type of tourism seems to be benefited in shoulder seasons, i.e., during spring and autumn; TCI and hence tourist activities improve in the distant future in relation to the present climate. On the other hand, concerning beach tourism, future projections indicate that it will not be negatively affected by future climate change and any changes will be positive.  相似文献   

15.
16.
The assessment of regional climate change impacts combined with the sensitivity of landscape functions by predictive modelling of hazardous landscape processes is a new fundamental field of research. In particular, this study investigates the effects of changing weather extremes on meso-regional-scale landscape vulnerability. Climatic-exposure parameter analysis was performed on a predicted climate change scenario. The exposure to climate change was analysed on the basis of the original data of the meso-scale IPCC A1B climate scenario from the REMO and ALADIN regional models for the periods of 2021–2050 and 2071–2100, and the regional types of climate change impacts were calculated by using cluster analysis. Selected climate exposure parameters of the REMO and ALADIN models were analysed, in particular, for extreme events (days with precipitation greater than 30 mm, heat waves, dry periods, wet periods) and for daily temperature and precipitation. The landscape functions impacted by climate change are proxies for the main recent and future problematic processes in Hungary. Soil erosion caused by water, drought, soil erosion caused by wind, mass movement and flash floods were analysed for the time periods of 1961–1990, 2021–2050 and 2071–2100. Based on the sensitivity thresholds for the impact assessments, the landscape functional sensitivity indicators were interpreted, and an integrative summary of the five indicators was made, differentiating the regions facing only a few or multiple sensitivities. In Central Hungary, the increasing exposure and sensitivity to droughts will be a serious problem when following the REMO scenario. In several regions, most indicators will change the sensitivity threshold from a tolerable risk to an increased or very high risk.  相似文献   

17.
This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region (including the Alqueva Reservoir) in the Lower Guadiana in Portugal, and Rivierenland in the Netherlands. The analysis comprises several regime elements considered to be important in adaptive and integrated water management: agency, awareness raising and education, type of governance and cooperation structures, information management and—exchange, policy development and—implementation, risk management, and finances and cost recovery. This comparative analysis has an explorative character intended to identify general patterns in adaptive and integrated water management and to determine its role in coping with the impacts of climate change on floods and droughts. The results show that there is a strong interdependence of the elements within a water management regime, and as such this interdependence is a stabilizing factor in current management regimes. For example, this research provides evidence that a lack of joint/participative knowledge is an important obstacle for cooperation, or vice versa. We argue that there is a two-way relationship between information management and collaboration. Moreover, this research suggests that bottom-up governance is not a straightforward solution to water management problems in large-scale, complex, multiple-use systems, such as river basins. Instead, all the regimes being analyzed are in a process of finding a balance between bottom-up and top–down governance. Finally, this research shows that in a basin where one type of extreme is dominant—like droughts in the Alentejo (Portugal) and floods in Rivierenland (Netherlands)—the potential impacts of other extremes are somehow ignored or not perceived with the urgency they might deserve.  相似文献   

18.
According to IPCC reports, the Mediterranean basin and particularly the North African area are amongst the most vulnerable regions to climate change. However, the information concerning the North African zone is very limited, and studies on climate change have never been conducted in Algeria up to now. This paper aims at bridging this information gap and initiates a first research on the impact of climate change on durum wheat cropping, the most strategic commodity in the food system and in the national economy of Algeria. Climate projections for the distant future (2071–2100), obtained from the ARPEGE-Climate model of Météo-France run under the medium A1B SRES scenario, are introduced into a simple agrometeorological crop model previously validated with field data. Two options for the sowing date are assessed: a dynamical date, chosen within the traditional sowing window by means of a rainfall criterion, or a prescribed date with supplemental irrigation on the same day. Crop development is modelled using thermal time, and maximum yield is determined from the accumulation of solar radiation. A water stress index is inferred from a daily water balance model, and actual yield is estimated from potential yield corrected by the water stress index. The model also takes into account the occurrence of dry periods during the growing season, which can induce partial or total failure of the crop cycle. Two stations, representative of two of the three agroclimatic areas where durum wheat is grown, were chosen: Algiers in the central northern region and Bordj Bou Arreridj in the eastern high plains. Climate change is not similar for both areas, but a tendency towards aridity is clear especially in spring. Future temperature and potential evapotranspiration increase in both regions with a maximum in spring and summer. In Algiers, rainfall will decrease throughout the year and mainly in spring and summer. Conversely, summer precipitation in Bordj Bou Arreridj will increase significantly. In both regions, the autumn rains will increase in the future climate, the possibilities of early sowing will be improved, crop cycle will be reduced, and harvest will take place earlier. In Algiers, yields tend to decrease in the future climate, whereas in Bordj Bou Arreridj, a dynamical (earlier) sowing will tend to keep yields at their current level.  相似文献   

19.
Climate change in Nepal and its impact on Himalayan glaciers   总被引:2,自引:0,他引:2  
Climate change can be particularly hard-hitting for small underdeveloped countries, relying heavily on natural resources for the economy and livelihoods. Nepal is one among these countries, being landlocked, with diverse physiographical characteristics within a relatively small territory and with rugged terrain. Poverty is widespread and the capacity of people and the country to cope with climate change impact is low. The country is dominated by the Asian monsoon system. The main occupation is agriculture, largely based on rain-fed farming practices. Tourism based on high altitude adventures is one of the major sources of income for the country. Nepal has a large hydropower potential. While only 0.75% of the theoretical hydropower potential has been tapped, Nepal can greatly benefit from this natural resource in the future. Climate change can adversely impact upon water resources and other sectors of Nepal. The source of water is mainly summer monsoon precipitation and the melting of the large reserve of snow and glaciers in the Himalayan highlands. Observations show clear evidences of significant warming. The average trend in the country is 0.06°C per year. The warming rates are progressively higher for high elevation locations. The warming climate has resulted in rapid shrinking of majority of glaciers in Nepal. This paper presents state-of-knowledge on the glacial dynamics in the country based on studies conducted in the past in Shorong, Khumbu, Langtang, Dhaulagiri and Kanchenjunga regions of Nepal. We present recent trends in river flow and an overview of studies on expected changes in the hydrological regime due to climate change. Formation, growth and likely outburst of glacial lake are phenomena directly related to climate change and deglaciation. This paper provides a synopsis of past glacial lake outburst floods impacting Nepal. Further, likely impacts of climate change on other sectors such as agriculture, biodiversity, human health and livelihoods are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号