首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   

2.
Blending of polylactide (PLA) with low stereoregularity and polyhedral oligomeric silsesquioxane grafted with arms of poly(ethylene glycol) methyl ether, acting as a plasticizer, allowed us previously to obtain a novel stable elastomeric-like material. The present contribution focuses on the properties of semi-crystalline PLA plasticized with this compound. Melt blends of PLA with 5–15 wt% of the plasticizer, were compression molded, quenched and annealed, which enabled cold-crystallization. The glass transition temperature of the blends and their drawability depended on their crystallinity and plasticizer content. The best ductility was reached at the plasticizer content of 15 wt%; the achieved strain at break was 6.5 (650%) and 1.3 (130%), for the quenched and annealed material, respectively. The latter value exceeded 20 times the strain at break of neat crystalline PLA. The tensile toughness of the annealed 15 wt% blend was 12 times larger than that of crystalline PLA. Moreover, annealing of 15 wt% blend improved its yield strength by 40%. Despite the two peaks of the loss modulus, indicating the two glass transitions in this blend, no heterogeneities were found by scanning electron microscopy, indicating that the plasticizer enriched phase formed instead of distinct inclusions of the plasticizer.  相似文献   

3.
Poly(lactide)-graft-glycidyl methacrylate (PLA-g-GMA) copolymer was prepared by grafting GMA onto PLA in a batch mixer using benzoyl peroxide as an initiator. The graft content was determined with the 1H-NMR spectroscopy by calculating the relative area of the characteristic peaks of PLA and GMA. The result shows that the graft content increases from 1.8 to 11.0 wt% as the GMA concentration in the feed varies from 5 to 20 wt%. The PLA/starch blends were prepared by the PLA-g-GMA copolymer as a compatibilizer, and the structure and properties of PLA/starch blends with or without the PLA-g-GMA copolymer were characterized by SEM, DSC, tensile test and medium resistance test. The result shows that the PLA/starch blends without the PLA-g-GMA copolymer show a poor interfacial adhesion and the starch granules are clearly observed, nevertheless the starch granules are better dispersed and covered by PLA when the PLA-g-GMA copolymer as a compatibilizer. The mechanical properties of the PLA/starch blends with the PLA-g-GMA copolymer are obviously improved, such as tensile strength at break increasing from 18.6 ± 3.8 MPa to 29.3 ± 5.8 MPa, tensile modulus from 510 ± 62 MPa to 901 ± 62 MPa and elongation at break from 1.8 ± 0.4 % to 3.4 ± 0.6 %, respectively, for without the PLA-g-GMA copolymer. In addition, the medium resistance of PLA/starch blends with the PLA-g-GMA copolymer was much better than PLA/starch blends.  相似文献   

4.
The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.  相似文献   

5.
Poly(lactic acid) (PLA) was blended with chemically modified Polyhydroxyoctanoate (mPHO) using a Haake twin-screw mixer. Due to the melt viscosity disparity between the two components, PHO was reacted with Hexamethylene diisocyanate (HDI) used as a chain extender to produce high molecular weight for improving compatibility and processability with PLA. The number average and weight average molecular weight of the PHO, reacted with 0.55 wt% HDI, were increased 314 and 275%, respectively, compared with those of the unmodified PHO. The blends were characterized for rheological, thermal, and mechanical properties. Infrared spectra confirmed the formation of the urethane linkages in mPHO. The shear viscosity, as a function of shear rate or shear stress, decreased with an increase in mPHO content, indicating that the PLA/mPHO blends show shear-thinning behavior along with the power-law model. DSC thermograms showed that the two components in the blends were found with two crystalline phases and two amorphous phases confirming the coexistence of two immiscible components. Tensile results indicated that tensile strength for blends decreased with increasing mPHO content up to 80%. A decrease in elastic modulus, as well as an increase in elongation at break, was seen as a function of mPHO content. Results of aging tests showed that the mechanical properties of the blends also dropped more at a higher PLA level when compared with those of the unaged samples.  相似文献   

6.
The polypropylene (PP)/poly(ethylene-co-octene) (POE) blends was prepared by means of a twin screw extruder in a range of temperature from 185 to 195 °C. The mechanical properties including tensile, flexural and impact of the PP/POE blends were measured at room temperature to identify the effect of the POE content on the mechanical properties. It was found that the Young’s modulus, tensile strength and tensile elongation at break decreased nonlinearly with increasing the POE weight fraction. While the V-notched and unnotched impact fracture strength increased nonlinearly with an increase of the POE weight fraction. The flexural modulus and strength decreased roughly linearly with increasing the POE weight fraction. Furthermore, the impact fracture surface of the blends was observed by using a scanning electronic microscope and the toughening mechanisms were discussed.  相似文献   

7.
In attempt to enhance the compatibility of NR in PLA matrix, and furthermore to enhance mechanical properties of PLA, PLA/NR blends with strong interaction were prepared in Haake internal mixer, using dicumyl peroxide (DCP) as cross-linker. The effects of dicumyl peroxide on morphology, thermal properties, mechanical properties and rheological properties of PLA and PLA/NR blends were studied. The results indicated that dicumyl peroxide could increase the compatibility of poly(lactic acid) and natural rubber. With small amount of dicumyl peroxide, the effect on NR toughening PLA was enhanced and the tensile toughness of PLA/NR blends was improved. When the DCP content was up to 0.2 wt%, the PLA/NR blend reached the maximum elongation at break (26.21 %) which was 2.5 times of that of neat PLA (the elongation at break of neat PLA was 10.7 %). Meanwhile, with introducing 2 wt% DCP into PLA/NR blend, the maximum Charpy impact strength (7.36 kJ/m2) could be achieved which was 1.8 times of that of neat PLA (4.18 kJ/m2). Moreover, adding adequate amount of DCP could improve the processing properties of blends: the viscosity of PLA/NR blend decreased significantly and the lowest viscosity of the blends could be achieved when the DCP content was 0.5 wt%.  相似文献   

8.
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.  相似文献   

9.
The tensile and combustion properties of polypropylene/polyolyaltha olefin composites filled with intumescent flame retardant (IFR) and nanometer calcium carbonate (nano-CaCO3) were measured. It was found that the values of the Young’s modulus of the composites increased almost linearly, while the values of the tensile yield strength and tensile fracture strength of the composites decreased with increasing the IFR weight fraction; the values of the elongation at break of the composites decreased quickly when the IFR weight fraction was lower than 10 wt%, and then varied slightly when the IFR weight fraction was higher than 10 wt%. Moreover, the morphology of the specimens after combustion was observed and the frame retardant mechanisms of the composites were discussed.  相似文献   

10.
Blends of poly-3-hydroxybutyrate with an elastomeric medium-chain-length poly-3-hydroxyalkanoate (MCL-PHA), containing 98 mol% 3-hydroxyoctanoate and 2 mol% 3-hydroxyhexanoate (referred to as PHO), were prepared by melt compounding. Coarsening of the droplet-matrix morphology of the blends was noted as the PHO content increased beyond 5 wt%; this was attributed to the significant viscosity mismatch between the components. Addition of PHO improved the thermal stability of the blends, reduced their crystallinity and resulted in shifts in their melting and crystallization temperatures. The blends had improved tensile strain at break. The unnotched impact strength showed a threefold increase at 30 wt% PHO content. Cross-linking of PHO using a peroxide initiator increased its viscosity, thus improving the morphology and mechanical properties of the blends.  相似文献   

11.
The rheologies, morphologies, crystallization behaviors, mechanical and thermal properties of poly(lactic acid) (PLA)/polypropylene (PP) blends and PLA/PP/maleic anhydride-grafted PP (MAPP) blends were investigated. The results showed that the complex viscosities of PLA/PP blends were between those of neat PLA and neat PP, and MAPP had a thinning effect on those of the blends. PLA/PP blends exhibited the distinct phase separation morphologies due to the limited partial miscibility of the blend components. MAPP slightly improved the miscibility between PLA and PP. Both the cold crystallization of PLA component and melt crystallization of PP component were enhanced, probably because PLA and PP were reciprocal nucleating agents. The tensile strength and flexural modulus decreased, while the tensile strain at break and heat deflection temperature (HDT) increased with the increasing PP content. MAPP had the positive effects on the notched impact strength and HDT of PLA-rich blends and also increased the flexural modulus of the binary blends. The thermal stability of the blend was improved by PP, and the incorporation of MAPP further enhanced the thermal stability.  相似文献   

12.
Poly(lactic acid) (PLA) is a biodegradable polymer that exhibits high elastic modulus, high mechanical strength, and feasible processability. However, high cost and fragility hinder the application of PLA in food packaging. Therefore, this study aimed to develop flexible PLA/acetate and PLA/chitosan films with improved thermal and mechanical properties without the addition of a plasticizer and additive to yield extruder compositions with melt temperatures above those of acetate and chitosan. PLA blends with 10, 20, and 30 wt% of chitosan or cellulose acetate were processed in a twin-screw extruder, and grain pellets were then pressed to form films. PLA/acetate films showed an increase of 30 °C in initial degradation temperature and an increase of 3.9 % in elongation at break. On the other hand, PLA/chitosan films showed improvements in mechanical properties as an increase of 4.7 % in elongation at break. PLA/chitosan film which presented the greatest increase in elongation at break proved to be the best candidate for application in packaging.  相似文献   

13.
Polylactide (PLA)/polymethylmethacrylate (PMMA)/α-cellulose composites were fabricated using a twin-screw extruder. During fabrication, α-cellulose short fibres were incorporated for improving the toughness of the brittle PLA and a chain extender was used for reducing PLA hydrolysis. Highly transparent PLA and PMMA were blended to obtain miscible and transparent blends. For evaluating the performance of the PLA/PMMA/α-cellulose composites, a series of measurements, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and determination of isothermal crystallisation behaviour, was conducted. Adding the chain extender considerably reduced the occurrence of hydrolytic degradation. Both the chain extender and α-cellulose short fibres increased the elongation at break and Izod impact strength of the composites. Compared with the neat PLA, including 1.0 wt% α-cellulose short fibres increased the elongation at break and Izod impact strength of the composite PLA by approximately 211 and 219 %, respectively. According to the observed mechanical performance, the optimal blending ratios for PLA and PMMA were between 90:10 and 80:20. The total light transmittance of the composites was as high as 91 %, indicating that the PLA/PMMA blend was highly miscible. The haze value of the PLA/PMMA/α-cellulose composites was lower than 32 %. Incorporating cellulose short fibres increased the number of crystallisation sites and crystallinity of the PLA/PMMA/α-cellulose composites while reducing the spherulite dimensions.  相似文献   

14.
In this study, poly(l-lactide) (PLA) films were fabricated by melt processing and the plasticizing effect of hexadecyl lactate (HL) (0, 5, 7.5, 10, and 12.5 wt% on PLA were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, tensile, transparency, and water vapor permeability tests. The SEM analysis revealed that PLA with 10 wt% HL appeared uniform with extra small bumps, confirmed the interaction between PLA and HL. The thermal analysis revealed a glass transition temperature of 57.4 °C for neat PLA film, but the addition of HL elicited a decrease in the temperature of the peak (43.8 °C). The incorporation of plasticizer into PLA resulted in the increase of elongation at break, as well as the decrease of tensile strength and tensile modulus. Even though a decrease in transparency was recorded, the PLA/HL blend films appeared transparent by visually observation. The water vapor permeability of PLA/HL blend films increased with the increase of HL. The PLA/HL blend films could effectively extend the shelf-life of fresh-cut pears as the commercial low density polyethylene films. The results indicated that the properties of PLA films can be modified with the addition of HL and PLA/HL blend films could serve as an alternative as food packaging materials to reduce environmental problems associated with synthetic packaging films.  相似文献   

15.
“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.  相似文献   

16.
Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.  相似文献   

17.
In this work, morphology, rheological and tensile properties of low-density polyethylene/linear low-density polyethylene/thermoplastic oxidized starch (LDPE/LLDPE/TPOS) blends are studied. The blends of LDPE/LLDPE (70/30, w/w) containing 0–20 wt% TPOS in the presence of 3 wt% of PE-grafted maleic anhydride (PE-g-MA) as a compatibilizer are prepared by a twin screw extruder and then converted to appropriate thin films using an extrusion film blowing machine. Scanning electron microscopic images show that there is a relative good dispersion of oxidized starch particles in PE matrices. However, as TPOS content in the blends increases, the starch particle size increases too. The rheological analyses indicate that TPOS can decrease the elasticity and viscosity of the blends. The LDPE/LLDPE/TPOS blends show power-law behavior and as the TPOS content increases the power-law exponent (n) and consistency index (K) decrease. The ultimate tensile strength and elongation at break of the final blend films reduce, when TPOS content increases from 5 to 20 wt%. However, the required mechanical properties for packaging applications are achieved when 10 wt% oxidized starch is added, according to ASTM D4635.  相似文献   

18.
Rapid growth of the biofuel industry is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. The objective of this research effort is to quantify the effects on mechanical properties of adding DDGS and glycerol to polylactic acid (PLA). The methodology was to physically mix DDGS, as filler, with PLA pellets and injection mold the blends into test bars using glycerol as a plasticizer. The bars were subject to mechanical testing procedures to obtain tensile strength, tensile and flexural moduli, elongation to break, and surface hardness of blends from 0 to 90?%, by weight, of plasticized filler. Blends were typically relatively brittle with little or no yielding prior to fracture, and the addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the PLA, and 20?C30?% filler reduced strength by 60?%. The 35?C50?% filled PLA had about one-fifth the value for pure PLA; at 60?C65?% filler level, about 10?% tensile strength remained; and over 80?% filler, 95?% of the strength was lost. Over 20?% filler, the tensile modulus decreased. The 35?% plasticized, filled blend yielded about one-half the stiffness as the pure PLA case; flexural modulus trended in the same manner but demonstrated a greater loss of stiffness. Most blends had less than 3?% elongation to break while surface hardness measurements indicated that up to 60?% filler reduced Shore D hardness by less than 20?%. The tensile strength and modulus data are consistent with the findings of other researchers and indicate that the type of filler and amount and sequence of plasticization are secondary effects, and the total PLA displaced is the dominant factor in determining the mechanical strength of the PLA and DDGS blends. Up to 65?% plasticized DDGS filler can be injection molded, and sufficient mechanical strength exists to create a variety of products. Such a novel material provides higher-value utilization of the biofuel coproducts of glycerol and DDGS and maintains the biodegradable and biocompatible nature of PLA.  相似文献   

19.
Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.  相似文献   

20.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号