首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Underground coal gasification (UCG) is a promising technology to reduce the cost of producing syngas from coal. Coal is gasified in place, which may make it safer, cleaner and less expensive than using a surface gasifier. UCG provides an efficient approach to mitigate the tension between supplying energy and ensuring sustainable development. However, the coal gasification industry presently is facing competition from the low price of natural gas. The technology needs to be reviewed to assess its competiveness. In this paper, the production cost of syngas from an imaginary commercial-scale UCG plant was broken down and calculated. The produced syngas was assumed to be used as feedstock in liquid fuel production through the Fischer-Tropsch process or methanol synthesis. The syngas had a hydrogen (H2) to carbon monoxide (CO) ratio of 2. On this basis, its cost was compared with the cost of syngas produced from natural gas. The results indicated that the production cost of syngas from natural gas is mainly determined by the price of natural gas, and varied from $24.46 per thousand cubic meters (TCM) to $90.09/TCM, depending on the assumed price range of natural gas. The cost of producing UCG syngas is affected by the coal seam depth and thickness. Using the Harmon lignite bed in North Dakota, USA, as an example, the cost of producing syngas through UCG was between $37.27/TCM and $39.80/TCM. Therefore, the cost of UCG syngas was within the cost range of syngas produced by natural gas conversion. A sensitivity analysis was conducted to investigate how the cost varies with coal depth and thickness. It was found that by utilizing thicker coal seams, syngas production per cavity can be increased, and the number of new wells drilled per year can be reduced, therefore improving the economics of UCG. Results of this study indicate the competitiveness of UCG regarding to natural gas conversion technologies, and can be used to guide UCG site selection and to optimize the operation strategy.  相似文献   

2.
Underground coal gasification (UCG) is an emerging energy technology for a cleaner type of coal extraction method. It avoids current coal mining challenges such as drastic changes to landscapes, high machinery costs, elevated risks to personnel, and post-extraction transport. UCG has a huge potential to provide a clean coal energy source by implementing carbon capture and storage techniques as part of the process. In order to support mitigation strategies for clean coal production and policy development, much research needs to be completed. One component of this information is the need to understand what happens when the coal burns and a subsurface cavity is formed. This paper looks at the efforts to enhance reliable prediction of the size and shape of the cavities. Reactions are one of the most important mechanisms that control the rate of the growth of the cavities. Therefore, modeling the reactions and precise prediction of reaction kinetics can influence the accuracy of a UCG process. The produced syngas composition during UCG is closely linked to the reactions that take place in this process, the permeability of the coal seam, and the temperature distribution. Since the combination of reactions can influence the distributions of the heat and gas components in the coal seam during UCG or even extinguish the combustion, accurate modeling of the reactions is crucial, particularly when all phenomena affecting the reaction rate are considered in a single set of kinetics. In this study, procedures are proposed to estimate the frequency factor and activation energy of the pyrolysis reaction using a single-step decomposition method, the kinetics of the endothermic direction of homogeneous reversible reactions, and the frequency factor of heterogeneous reactions from experiments or literature data. The estimated kinetics is more appropriate for simulation of the UCG process using the porous medium approach. Computer Modelling Group’s CMG-STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) software is used in this study.  相似文献   

3.
Coal is the most abundant hydrocarbon energy source in the world. It also produces a very high volume of greenhouse gases using the current production technology. It is more difficult to handle and transport than crude oil and natural gas. We face a challenge: how can we access this abundant resource and at the same time mitigate global environmental challenges, in particular, the production of carbon dioxide (CO2)? The editors of this special edition journal consider the opportunity to increase the utilization of this globally abundant resource and recover it in an environmentally sustainable manner. Underground coal gasification (UCG) is the recovery of energy from coal by gasifying the coal underground. This  process produces a high calorific synthesis gas, which can be applied for electricity generation and/or the production of fuels and chemicals. The carbon dioxide emissions are relatively pure and the surface facilities are limited in their environmental footprint. Unused carbon is readily separated and can be geo-sequester in the resulting cavity. The cavity is also being considered as a potential option to mitigate against change impacts of other sources of carbon dioxide (CO2) emissions. These outcomes mean there is an opportunity to provide developing and developed countries a source of low-cost clean energy. Further, the burning of coal in situ means that the traditional dangers of underground mining and extraction are reduced, a higher percentage of the coal is actually recovered and the resulting cavern creates the potential for a long-term storage solution of the gasification wastes. The process is not without challenges. Ground subsidence and groundwater pollution are two potential environmental impacts that need to be averted for this process to be acceptable. It is essential to advance the understanding of this practice and this special edition journal seeks to share the progress that scientists are making in this dynamic field. The technical challenges are being addressed by researchers around the world who work to resolve and understand how burning coal underground impacts the geology, the surface land, and ground water both in the short and the long term. This special issue reviews the process of UCG and considers the opportunities, challenges, risks, competitive analysis and synergies, commercial initiatives and a roadmap to solutions via the modelling and simulation of UCG. Building and then disseminating the fundamental knowledge of UCG will enhance policy development, best practices and processes that reflect the global desires for energy production with reduced environmental impact.  相似文献   

4.
From an economic point of view Underground Coal Gasification (UCG) is a promising technology that can be used to reach coal resources that are difficult or expensive to by conventional mining methods. Furthermore, the process addresses safety concerns, by avoiding the presence of workers underground. An optimal UCG process requires the integration of various scientific fields (chemistry, geochemistry, geomechanics) and the demonstration of limited of environmental impacts. This paper focuses on the mechanical component of the UCG operation and its impact on the surrounding environment in terms of stability and land subsidence. The mechanical components are also considered. Underground mining by coal combustion UCG challenges include the mechanical behavior of the site and of stability of the overburden rock layers. By studying the underground reactor, its inlet and outlet, we confirm the key role played by mechanical damage and thermo-mechanical phenomena are identified. Deformation or collapse above the cavity may cause a collapse in the overlying layers or subsidence at the surface level. These phenomena are highly dependent on the thermoporomechanical behavior of the rock surrounding the cavity (the host rocks). Unlike conventional methods, the UCG technology introduces an additional variable into the physical problem: the high temperatures, which evolve with time and space. In this framework, we performed numerical analyses of the coal site that could be exploited using this method. The numerical results presented in this paper are derived from models based on different assumptions describing a raw geological background. Several 3D (3 dimensional) and 2D (2 dimensional, plane) nonlinear finite element modelings are performed based on two methods. The first assumes a rock medium as a perfect thermo-elastoplastic continuum. In the second, in order to simulate large space scale crack propagation explicitly, we develop a method based upon finite element deactivation. This method is built on a finite element mesh refinement and uses Mohr-Coulomb failure criterion. Based on the analysis of the numerical results, we can highlight two main factors influencing the behavior and the mechanical stability of the overburden, and consequently the UCG process evolution. The first is the size of the cavity. This geometrical parameter, which is common to all types of coal exploitation, is best controlled using the classic exploitation method. We show that in the case of UCG, the shape of the cavity and its evolution over time can be modified considerably by the thermomechanical behavior of the host rocks. The second is the presence of a heat source whose location and intensity evolve over time. Even if thermal diffusivity of the rock is low and only a small distance from the coal reactor is thermally affected, we show that the induced mechanical changes extend significantly in the overburden, and that subsidence can therefore be estimated at the surface. We conclude the integration of the mechanical analysis into a risk analysis process mechanical analysis can be integrated in a thorough risk analysis.  相似文献   

5.
Underground coal gasification (UCG) is an advancing technology that is receiving considerable global attention as an economic and environmentally friendly alternative for exploitation of coal deposits. UCG has the potential to decrease greenhouse gas emissions (GHG) during the development and utilization of coal resources. In this paper, the life cycle of UCG from in situ coal gasification to utilization for electricity generation is analyzed and compared with coal extraction through conventional coal mining and utilization in power plants. Four life cycle assessment models have been developed and analyzed to compare (greenhouse gas) GHG emissions of coal mining, coal gasification and power generation through conventional pulverized coal fired power plants (PCC), supercritical coal fired (SCPC) power plants, integrated gasification combined cycle plants for coal (Coal-IGCC), and combined cycle gas turbine plants for UCG (UCG-CCGT). The analysis shows that UCG is comparable to these latest technologies and in fact, the GHG emissions from UCG are about 28 % less than the conventional PCC plant. When combined with the economic superiority, UCG has a clear advantage over competing technologies. The comparison also shows that there is considerable reduction in the GHG emissions with the development of technology and improvements in generation efficiencies.  相似文献   

6.
Mitigation and Adaptation Strategies for Global Change - Underground coal gasification (UCG) is an energy production pathway in underground coal deposits with the potential advantage of decreasing...  相似文献   

7.
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.  相似文献   

8.
在煤炭地下气化模型试验的基础上,研究了褐煤原煤及其气化产物中的铅和砷的含量和分布,进行了铅和砷的质量平衡计算,并分析了其析出的反应机理.实验结果表明,铅在原煤中以残渣态23.07%、碳酸盐和铁锰氧化物结合态53.96%、硫化物结合态22.96%存在,而砷则以残渣态47.73%、有机结合态7.95%、硫化物结合态40.90%存在.在气化过程中63.65%的铅和56.23%的砷残存在地下煤灰中,1.15%的Pb和6.62%的As转化到煤气冷凝水中,35.20%的Pb和37.15%的As转化到煤气中.  相似文献   

9.
煤层瓦斯压力预测对煤与瓦斯突出和煤层安全开采意义重大。在陈连省等基于量纲分析建立的煤层瓦斯压力计算模型的基础上,通过重新进行量纲分析以及MATLAB数值模拟分析,利用已有的实测数据,针对其所建立的煤层瓦斯压力计算模型进行了重新建模和优化,新模型为整体的一个数学模型,避免了原分段数学模型带来的误差,使得煤层瓦斯压力的预测计算更为准确,可为煤层瓦斯压力的预测提供参考。  相似文献   

10.
Syngas is a clean energy carrier and a major industrial feedstock. In this paper, syngas was produced via biomass chemical looping gasification(CLG) process. Hematite, the most common Fe-based oxygen carrier(OC), was modified with different metal oxides(CeO2, CaO and MgO) by the impregnation method. The hematite modified by CeO2, CaO and MgO was namely as CeO2-hematite(CeO2-H), CaO-hematite(CaO-H) and MgO-hematite(MgO-H), respectively. The introduction...  相似文献   

11.
This paper presents the outcome of a feasibility study on underground coal gasification (UCG) combined with direct carbon dioxide (CO2) capture and storage (CCS) at a selected site in Bulgaria with deep coal seams (>1,200 m). A series of state-of-the-art geological, geo-mechanical, hydrogeological and computational models supported by experimental tests and techno-economical assessments have been developed for the evaluation of UCG-CCS schemes. Research efforts have been focused on the development of site selection requirements for UCG-CCS, estimation of CO2 storage volumes, review of the practical engineering requirements for developing a commercial UCG-CCS storage site, consideration of drilling and completion issues, and assessments of economic feasibility and environmental impacts of the scheme. In addition, the risks of subsidence and groundwater contamination have been assessed in order to pave the way for a full-scale trial and commercial applications. The current research confirms that cleaner and cheaper energy with reduced emissions can be achieved and the economics are competitive in the future European energy market. However the current research has established that rigorous design and monitor schemes are essential for productivity and safety and the minimisation of the potential environmental impacts. A platform has been established serving to inform policy-makers and aiding strategies devised to alleviate local and global impacts on climate change, while ensuring that energy resources are optimally harnessed.  相似文献   

12.
文章以煤制气项目为例,介绍了煤化工项目生产中有机废水的来源及特性,探讨了三种常用的煤化工废水处理方法。总结出多级生物处理法在煤制气有机废水处理的实用性,对今后煤制气有机废水处理的工作起到一定的指导意义。  相似文献   

13.
济宁煤田煤中微量元素的地球化学研究   总被引:1,自引:0,他引:1  
阐述了研究煤中微量元素的意义 ,对研究区及采样方法作了介绍 ,在测试分析资料的基础上 ,探讨了济宁煤田煤中微量元素在各井田内的平面变化特征和微量元素在不同煤层、同一煤层中垂向上的分布变化规律 ,初步研究了煤中微量元素的赋存状态 ,分析了煤中微量元素富集的原因 ,为今后济宁煤田煤的综合开发和利用提供了重要的参考资料。  相似文献   

14.
在当今能源紧缺和环境污染严重的前提下,煤层气作为一类非常规天然气,越来越受到人们的重视。传统观点认为煤层甲烷多由高温热解产生,但是根据甲烷的同位素特征来判断,世界很多地方(包括我国鄂尔多斯、淮南等地)的煤层气多属生物成因或者生物和热成因混合。同时,越来越多的生物学证据也表明种类多样的产甲烷相关微生物广泛存在于煤层伴生地层水中或者煤层样品中。这也说明生物成因的煤层气仍然在不断地产生,这也为利用生物方法促进煤层气产生和利用提供了良好的契机。本文将介绍产甲烷微生物种群构成与功能、产气途径、影响产气速率的因素,探讨我国微生物强化产煤层气并实现产业化的应用前景。  相似文献   

15.
选用合适的民用清洁煤技术是提高居民生活用煤能源利用效率、减少环境污染的重要途径之一,本文利用笔者提出的清洁煤技术定量评价方法对民用清洁煤技术进行了定量评价与筛选,评价结果表明,在标准状态下各种民用适用清洁煤技术的单位综合成本分别为选煤48元/GJ,民用型煤45.73元/GJ,炼焦制气28.53元/GJ,加压气化联产甲醇54.73元/GJ,加压气化联产油蜡50.71元/GJ,两段炉气化88.66元/GJ,直立炉气化38.84元/GJ,其中炼焦制气是单位综合成本最小的民用清洁煤技术.敏感度分析表明,煤气化将是民用清洁煤技术的主要发展方向  相似文献   

16.
张藤元  冯俊小  冯龙 《环境工程》2022,40(2):113-119
热解气化技术作为一种城市固体废弃物(municipal solid waste,MSW)无害化处理的方式,其相关研究具有现实意义.利用Aspen Plus软件建立了 MSW固定床热解气化模型,在模型验证的基础上探讨了气化温度、气化压力和空气当量比对MSW热解气化过程的影响.通过二次回归正交试验法得出MSW热解气化过程中...  相似文献   

17.
采用固定床气化装置,在水蒸气流量为0.32 kg/h条件下进行了污泥水蒸气气化实验。研究了温度对污泥气化气体产率、氢气产率、气体成分与低位热值、气体能源转化率的影响。结果表明:随着反应温度从700℃上升到1 000℃;气体产率从0.39 m3/kg升至0.61 m3/kg;氢气产率从0.18 m3/kg升至0.34 m3/kg;气体能源转化率从54%升至88%;产气的低位热值从10 688.1 kJ/m3提高至11 168.9 kJ/m3。同时产气中H2和CO含量随着温度的升高而增加,CH4、CO2和CnHm含量随温度的升高而减少。因此,为了获得更多的可燃气体,建议在污泥水蒸气气化工艺中,气化温度必须大于800℃。  相似文献   

18.
基于FLAC3D的矩形硐室围岩松动圈确定   总被引:1,自引:0,他引:1  
围岩松动圈厚度的确定是地下硐室支护的基础,而对于非圆形硐室没有现成的计算公式,且现场实测松动圈一般比较困难,因此,对于非圆形硐室建立围岩松动圈与其影响因素之间的函数关系势在必行。本文采用FLAC3D数值计算程序,通过模拟不同条件下矩形硐室的松动圈,用回归方法建立松动圈厚度(Lp)与围压(P)、粘聚力强度(C)、摩擦角(φ)及跨高比K之间的关系,并通过了假设检验。  相似文献   

19.
煤炭占我国能源消费结构的首位,它排放出大量污染物,必须从它的勘探,生产,利用和消费的全过程进行治理,特别是采用选煤,煤的气化,经和洁净燃烧等措施,才能达到煤炭高效洁净化的目的。  相似文献   

20.
Coal gasification is a technology that has been around for 200 yr. With the recent technology advances in the past 20 yr, it has become an option for the clean production of power and other energy forms. China will continue to be the largest user of coal in the world. Coal is the source of energy in almost every area of everyday life in China. This paper is an overview of the prospects of coal gasification in China. It discusses the opening of Chinese markets to more private sector participation. In particular the paper focuses on the energy sector and coal as the both an economic development variable and a factor in climate change. Clean coal technologies can be apart of the production cycle in China and hence can impact the Chinese economy in a positive manner as well as lower the current high levels of atmospheric pollution. Proven integrated gasification combined cycle (IGCC) technologies in new production methods and applications can provide China with its rising energy needs and reduce the SOX, NOX and particulates in the atmosphere. The results of IGCC can support the Chinese economy as it moves into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号