首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

2.
Concentrations of selected heavy metals (Fe, Mn, Ni, Cu, Zn, Pb, Hg, Cr, Al, and As) in surface sediments from 18 stations in the Candarli Gulf were studied in order to understand current metal contamination due to urbanization and economic development in Candarli region, Turkey. The sediment samples were collected by box corer in Candarli Gulf in 2009 to assess heavy metal pollution. Heavy metal concentrations in surface sediment varied from 1.62% to 3.60% for Fe, 0.38?C2.53% for Al, 173?C1,423 for Mn, 8?C100 for Ni, 3?C46 for Cu, 55?C119 for Zn, 16?C138 for Pb, 0.2?C6.3 for Hg, 16?C71 for Cr, and 11?C37 mg kg???1 for As. This study showed that the concentrations of Mn, Ni, Zn, Pb, Hg, and Cr in the surface sediment layers were elevated when compared with the subsurface layers. Both metal enrichment and contamination factors show that Hg, Zn, and Pb contamination exists in the entire study area and contamination of other metals is also present in some locations depending on the sources.  相似文献   

3.
Surface sediments collected from nine stations in Nemrut Bay, Aegean Sea were analyzed for trace metals (Hg, Cd, Pb, Cr, Cu, Zn, Mn, Ni, Fe, As, and Mg) and grain sizes. The results were compared with the numerical sediment guidelines used in North America as well as literature values reported for similar studies conducted in Izmit Bay and Izmir Bay. The metal levels were also evaluated according to the enrichment factor and contamination factor analyses. The analyses revealed significant anthropogenic pollution of Hg, Pb, Zn, and As in the surficial sediments of Nemrut Bay.  相似文献   

4.
The concentration of heavy metals in the bottom sediment and interstitial water collected from two reservoirs in Singapore was found to be enriched. A distribution coefficient,K d , was used to assess the chemical stability of heavy metals in the sediments. Numerical models were used to assess (1) the redistribution of heavy metals in a changing environment, and (2) long-term self clean-up capabilities of a reservoir.  相似文献   

5.
The south west coastal zone in the Gulf of Mexico is an area with great industrial and agricultural development, which experiences intensive prospecting and extraction of hydrocarbons. After running through industrial, agricultural, and urban areas, waters from both the Jamapa River and La Antigua River arrive here. The rivers’ discharge areas of influence were estimated considering the textural and chemical composition of the supplied sediments. The main factors that determine sediment distribution were mineralogy, heavy minerals, carbonates, and anthropic contributions. The presence of metals in excess was evaluated using various pollution indicators, such as the enrichment factor, contamination factor, modified contamination factor, and geo-accumulation indexes. Data from different used contamination indexes show metal enrichments in As, Cu, Zn, Co, Cr, and V in La Antigua; As, Cu, and Cr in Jamapa; and As, Zn, and Pb in the Continental slope area. The adverse effects of metals on aquatic organisms were assessed using sediment quality guidelines that show Ni, As, Cu, and Cr may produce adverse effects on coastal areas. There was no evidence of contamination associated to the oil industry.  相似文献   

6.
Thirty-nine samples of recent bottom sediments were collected from Mabahiss Bay, north of Hurghada City, Red Sea, Egypt. The collected samples were subjected to a total digestion technique and analyzed by absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cu, and Mn. Concentration data were processed using correlation analysis, principal component analysis, and hierarchical cluster analysis. Multivariate statistical analysis classified heavy metals in the study area into different groups. The pollution level attributed to these metals was evaluated using geoaccumulation index and contamination factor in order to determine anthropogenically derived sediment contamination. The results of both geoaccumulation index and contamination factor results reveal that the study area is not contaminated with respect to Zn, Ni, Cu, and Mn; uncontaminated to moderately contaminate with Pb; and moderately to strongly contaminate with Cd. The high contents of Pb, Cd, and Co in the study area result from various anthropogenic activities including dredging, land filling, localized oil pollution, using of antifouling and anticorrosive paints from fishing and tourist boats, and sewage discharging from various sources within the study area.  相似文献   

7.
The use of statistical t tests were used to determine lead, zinc, and cadmium enrichment in various Louisiana sediments. Both absolute metal concentrations and trace metal/conservative metal concentration ratios were used in comparing sampled sites to a 110 m deep background core taken just off the mouth of the Mississippi River. Concentration ratios were used to reduce the effects of certain chemical and physical sediment characteristics on the quantity of metal contained in a given sediment.Results from the comparison of sample sites to the background reveal metal enrichment at several sites. The University Lake sampling sites exhibit both lead and zinc enrichment when using both the concentration alone and ratio methods of comparison. Additionally, cadmium enrichment is indicated in the sediments of University Lake when using only the ratio method of comparison. Several sampled sediments in and around the New Orleans metropolitan area exhibited lead and cadmium enrichment.  相似文献   

8.
In this work, water and sediment samples were collected from three different stations located along the Sakarya river between May and September 2003. Lead, copper, chromium, zinc, nickel and cadmium concentrations were determined by using solvent extraction and flame atomic absorption spectrometric method. The results show that differences based upon sampling times, regions, sediment and water samples were observed. The mean levels of copper, nickel, chromium, lead, cadmium, zinc for sediment samples are; 4.630 μg g−1, 13.520 μg g−1, 8.780 μg g−1, 2.550 μg g−1, 9.990 μg g−1 and for water samples are; 0.851 μg g−1, 1.050 μg g−1, 0.027 μg g−1, 1.786 μg g−1, 0.236 μg g−1, 0.173 μg g−1, respectively.  相似文献   

9.
Assessment of carcinogenic heavy metal levels in Brazilian cigarettes   总被引:1,自引:0,他引:1  
Total mercury (Hg(T)) and bioavailability Hg (Hg(HCl)) concentrations in soil were determined in five districts in Wuhu urban area. Spatial pattern of soil Hg concentration was generated through kriging technology. Results showed that Hg concentration in soil ranged from 0.024 to 2.844 mg kg(?-1) with an average of 0.207 mg kg(?-1). Hg concentration in soil appeared to have a block distribution and decreased from downtown to surrounding district. And Hg concentrations appeared to have a medium scale spatial auto correlation, strongly affected by human activity. The maximal Hg average concentration (0.332 mg kg(?-1)) in soil appeared in Jinghu district, where the high intensity of human activities is. Second highest Hg average concentration (0.263 mg kg(?-1)) in soil appeared in development district, where the intensive industrial activities are. Bioavailability Hg concentration in soil ranged from 2.6 to 4.9 μg kg(?-1) with an average of 3.8 μg kg(?-1), which had a ratio of 0.28~6.44% to total Hg. The ratios of bioavailability Hg to total Hg in vegetable soil were bigger than those of park soil. Correlation analysis showed that total Hg, organic matter, total phosphorus, and bioavailability Hg concentrations in soil were significantly positively correlated. Hg concentration in vegetable ranged from 2.7 to 15.2 μg kg(?-1) with an average of 6.5 μg kg(?-1). Hg concentration in vegetable was positively correlated with Hg(HCl) concentration in soil. According to the calculation on hazard quotient (HQ) for children, inhalation of Hg vapor from soil is the main exposure pathway, in which HQ is 2.517 × 10(?-2), accounting for 80.3% of the four exposure pathways. Hazard index (HI) of the four exposure pathways is lower than the "safe" level of HI = 1; therefore, exposure of soil Hg exhibited little potential health risk to children in Wuhu urban area.  相似文献   

10.
11.
Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.  相似文献   

12.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

13.
The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.  相似文献   

14.
Aqaba Gulf is an economically important marine environment in Egypt. Its coastal area was subjected to anthropogenic impact of urbanization and economic development during the last decades. The study was oriented to investigate the distribution as well as assess the heavy metal pollution status (Fe, Mn, Zn, Ni, Co, Cr, Cu, and Cd) in its surface sediment. Large heavy metals fluctuations were detected along the studied area. The results pointed out to the highly significant correlations among Fe, Cu, Ni, and Co heavy metals and their similar lithogenic origin beside their input sources. The sediment quality was performed by using the geo-accumulation index (I (geo)) and different sediment criteria guidelines; China State Bureau of Quality and Technical Supervision (CSBTS), and Canadian guidelines. Among the studied heavy metals, Cd was the only metal that showed moderate pollution for I (geo) as well as it exceeded the primary and the secondary criteria of CSBTS and the threshold effect level of the Canadian guidelines (TEL). On the other hand, the other heavy metals were within the natural background levels.  相似文献   

15.
Eight cruises were conducted on the south Yellow Sea (SYS) from 1998 to 2005. Variations and the potential ecological risk of heavy metals were studied using the survey data collected during October 2003. The metal content (except for As) was high in the central area where the fine grain size sediments were dominant, and low inshore area where more coarse sediments were present. This suggested that grain size was important in determining distributions of heavy metals. In some local areas, other influencing factors, such as organic content, sedimentation rate, burial efficiency and metal's existing form were discussed. The annual averages of metals showed a stable trend with appreciable fluctuations in 8 years. Using potential ecological risk index (E (RI)) to evaluate the integrated pollution effect of heavy metals, 38.7% of the investigated area was in a moderate degree of contamination, while 77.8% was under moderate ecological risk. However, no distinct correlation was found between E (RI) and plankton biomass. In conclusion, the sediment quality of SYS was good, and the ecological risk was low in general.  相似文献   

16.
Environmental effects due to continuous accumulation of hazardous materials like heavy metals in the surface sediments of lake systems can stress fragile ecosystems. Elucidating the mechanisms influencing the concentration and distribution of heavy metals becomes vital in formulating lake management strategies to preserve the quality of the water environment. Studying of the effect of seasonal variations on surface sediments will help in understanding the different factors and sources contributing and diluting these persistent pollutants. In this study, heavy metal pollution in a tropical shallow lake (Akkulam-Veli) in South India was investigated by monitoring the seasonal variations of heavy metals and major elements in surface sediments. The metallic pollutants (Cr, Ni, Co, Cu, Zn, Pb, Fe, and Mn) and major elements (Si, Ti, Al, Ca, Mg, Na, K, and P (measured as oxides) in the surface sediments of this lake were monitored during four consecutive seasons. The results were subjected to correlation analysis and principal component analysis to study the interrelationships of different parameters as well to determine the possible origin of pollutants. Although metal concentrations were found to be unaffected by seasonal variations, the factors contributing to occurrence of these heavy metals were found to be affected by seasonal fluctuations.  相似文献   

17.
The level of mercury, iron, copper, and zinc was measured in 18 Great cormorants (Phalacrocorax carbo) collected from Anzali and Gomishan wetlands in the south of the Caspian Sea. The mean level of metals in dried tissues of the muscle, liver, and kidney was 2.26, 5.71, 3.79—Hg; 943.54, 379.97, 348.05—Fe; 42.64, 14.78, 60.79—Cu, and 71.97, 134.63, 77.82—Zn, respectively (mg/kg). There was no significant different between genders in terms of accumulation of metals, except for copper in the kidney. The results of Pearson correlation showed a positive and strong relationship between the fat in the liver and mercury (r?=?0.95, R2?=?0.90). Also, there was a significant difference between the values of all metals with the allowable limits presented in EPA, WHO, and CCME, where all of values were above standard levels. Thus, as the muscles of the bird are sometimes eaten by humans, this result is a serious warning. Nevertheless, the relatively high levels of heavy metals accumulated in different tissues of Great cormorant at that time are a result of their high weight and nourishment they have at the terminal days of their migration due to lack of natural physical activity. Regarding to the importance of heavy metals in birds, we suggest the same study to be conducted on the species in other seasons and wetlands.  相似文献   

18.
The article presents the distribution and enrichment of acid-leachable heavy metals (ALHMs) Cu, Zn, Pb, Cr, Mn, and Fe in the intertidal sediments collected from Quanzhou Bay, southeast coast of China. The contents of ALHMs along with sediment texture, total organic carbon, S2???, and CaCO3 in surface sediments were analyzed to identify the input of heavy metals from various sources. The enrichment of ALHMs in the sediments is mainly attributed to the intense industrial activities around Quanzhou Bay and to the serried activities of intertidal breed aquatics along the seacoast. The results also illustrate the association between the ALHMs with the finer fractions, organic matter, and Fe oxyhydroxides in the sediments. The above results were very supported by the multivariate statistical analyses, including correlation, principal component analysis, and hierarchical clustering analysis. Comparative results of ALHMs in the intertidal sediments from Quanzhou Bay with those in other domestic bays and estuaries indicate that the study area has been enriched with heavy metals, especially with Zn, Cu, and Pb, during the past few decades. The results of the present study suggest that the authorities should pay attention to the current status and take some measures to control the heavy metal pollution in the study area.  相似文献   

19.
Cu, Pb, and Hg concentrations were determined in surface sediment samples collected at three sites in San Jorge Bay, northern Chile. This study aims to evaluate differences in their spatial distribution and temporal variability. The highest metal concentrations were found at the site “Puerto”, where minerals (Cu and Pb) have been loaded for more than 60 years. On the other hand, Hg does not pose a contamination problem in this bay. Cu and Pb concentrations showed significant variations from 1 year to another. These variations seem to be a consequence of the combination of several factors, including changes in the loading and/or storage of minerals in San Jorge Bay, the dredging of bottom sediments (especially at Puerto), and seasonal changes in physical–chemical properties of the water column that modify the exchange of metals at the sediment–water interface. Differences in the contamination factor and geoaccumulation index suggest that pre-industrial concentrations measured in marine sediments of this geographical zone, were better than geological values (average shale, continental crust average) for evaluating the degree of contamination in this coastal system. Based on these last two indexes, San Jorge Bay has a serious problem of Cu and Pb pollution at the three sampling locations. However, only Cu exceeds the national maximum values used to evaluate ecological risk and the health of marine environments. It is suggested that Chilean environmental legislation for marine sediment quality—presently under technical discussion—is not an efficient tool for protecting the marine ecosystem.  相似文献   

20.
An investigation is reported of the degree of metal pollution in the sediments of Kafrain Dam and the origin of these metals. Fourteen sampling sites located at Kafrain Dam were chosen for collecting the surface, cutbank, and dam bank sediment samples. The sediment samples have been subjected to a total digestion technique and analyzed by atomic absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cr, Cu, Mn, and Fe. XRD analyses indicate that the sediments of Kafrain Dam are mainly composed of calcite, dolomite, quartz, orthoclase, microcline, kaolinite, and illite reflecting the geology of the study area. The enrichment factor (EF) and geoaccumulation index (I geo) have been calculated and the relative contamination levels assessed in the study area. The calculations of I geo are found to be more reliable than of those of EF. The enrichment of metals in the study area has been observed to be relatively high. I geo results reveal that the study area is not contaminated with respect to Ni, Co, Cr, Cu, and Mn; moderately to strongly contaminated with Pb; and strongly to extremely contaminated with Cd and Zn. The high contents of Pb, Cd, and Zn in the study area result from anthropogenic activities in the catchment area of the dam site. These sources mainly include the agricultural activities, sewage discharging from various sources within the study area (effluent of wastewater treatment plants, treated and untreated wastewaters, and irrigation return water), and the several industries located in the area. Degrees of correlations among the various metals in the study area are suggested by the results and the intermetallic relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号