首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diet items and habitat constitute some of the environmental resources that may be used differently by individuals within a population. Long-term fidelity by individuals to particular resources exemplifies individual specialization, a phenomenon that is becoming increasingly recognized across a wide range of species. Less is understood about the consequences of such specialization. Here, we investigate the effects of differential foraging ground use on reproductive output in 183 loggerhead sea turtles (Caretta caretta) nesting at Wassaw Island, Georgia (31.89°N, 80.97°W), between 2004 and 2011 with resulting possible fitness effects. Stable isotope analysis was used to assign the adult female loggerheads to one of three foraging areas in the Northwest Atlantic Ocean. Our data indicate that foraging area preference influences the size, fecundity, and breeding periodicity of adult female loggerhead turtles. We also found that the proportion of turtles originating from each foraging area varied significantly among the years examined. The change in the number of nesting females across the years of the study was not a result of uniform change from all foraging areas. We develop a novel approach to assess differential contributions of various foraging aggregations to changes in abundance of a sea turtle nesting aggregation using stable isotopes. Our approach can provide an improved understanding of the influences on the causes of increasing or decreasing population trends and allow more effective monitoring for these threatened species and other highly migratory species.  相似文献   

2.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

3.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

4.
Hannan LB  Roth JD  Ehrhart LM  Weishampel JF 《Ecology》2007,88(4):1053-1058
Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.  相似文献   

5.
Marine coast modification and human pressure affects many species, including sea turtles. In order to study nine anthropogenic impacts that might affect nesting selection of females, incubation and hatching survival of loggerhead (Caretta caretta) and green turtle (Chelonia mydas), building structures were identified along a 5.2 km beach in Kanzul (Mexico). A high number of hotels and houses (88; 818 rooms), with an average density of 16.6 buildings per kilometer were found. These buildings form a barrier which prevents reaching the beach from inland, resulting in habitat fragmentation. Main pressures were detected during nesting selection (14.19% of turtle nesting attempts interrupted), and low impact were found during incubation (0.77%) and hatching (4.7%). There were three impacts defined as high: beach furniture that blocks out the movement of hatchlings or females, direct pressure by tourists, and artificial beachfront lighting that can potentially mislead hatchlings or females. High impacted areas showed lowest values in nesting selection and hatching success. Based on our results, we suggest management strategies to need to be implemented to reduce human pressure and to avoid nesting habitat loss of loggerhead and green turtle in Kanzul, Mexico.  相似文献   

6.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

7.
Abstract:  Relocation of eggs is a common strategy for conservation of declining reptilian populations around the world. If individuals exhibit consistency in their nest-site selection and if nest-site selection is a heritable trait, relocating eggs deposited in vulnerable locations may impose artificial selection that would maintain traits favoring unsuccessful nest-site selection. Conversely, if most individuals scatter their nesting effort and individuals that consistently select unsuccessful nest sites are uncommon, then artificial selection would be less of a concern. During the 2005 nesting season of loggerhead turtles ( Caretta caretta ) at Mon Repos beach, Queensland, Australia, we measured the perpendicular distance from the original nest site to a stationary dune baseline for in situ (unrelocated) and relocated clutches of eggs. We observed the fate of in situ clutches and predicted what would have been the fate of relocated clutches if they had not been moved by mapping tidal inundation and storm erosion lines. In 2005 turtles deposited an average of 3.84 nests and did not consistently select nest sites at particular distances from the stationary dune baseline. Selection of unsuccessful nest sites was distributed across the nesting population; 80.3% of the turtles selected at least one unsuccessful nest site and when previous breeding seasons were included, 97% selected at least one unsuccessful nest site. Females with nesting experience selected more successful nest sites than females with little or no experience. Relocating eggs vulnerable to tidal inundation and erosion saves the progeny from a large percentage of the population and the progeny from individuals who may in subsequent years nest successfully. Our results suggest that doomed-egg relocation does not substantially distort the gene pool in the eastern Australian loggerhead stock and should not be abandoned as a strategy for the conservation of marine turtle populations.  相似文献   

8.
We estimated for the first time the growth rates of loggerhead sea turtles of Mediterranean and of Atlantic origin found in the Mediterranean Sea, combining both skeletochronological and genetic analyses. Our growth models suggested that the growth rate of loggerhead sea turtles of Mediterranean origin was faster than that of their conspecifics with an Atlantic origin exploiting the feeding grounds in the Mediterranean Sea. The age at maturity for Mediterranean origin loggerhead sea turtles, estimated using our best fitting model, was 24 years, which suggests that loggerhead sea turtles nesting in the Mediterranean are not only smaller than those nesting in the western North Atlantic but also younger.  相似文献   

9.
To determine whether loggerhead turtles (Caretta caretta) nesting in southeastern USA exhibit polymorphic foraging strategies, we evaluated skin samples for stable isotopes of carbon (δ13C) and nitrogen (δ15N) from 310 loggerheads from four locations on the east coast of Florida and epibionts from 48 loggerheads. We found a dichotomy between a depleted δ13C cluster and an enriched δ13C cluster. Epibionts from oceanic/pelagic or neritic/benthic habitats were largely consistent with this dichotomy. The bimodal distribution of δ13C could reflect a bimodal foraging strategy or—because of the potential for confounding among four gradients of δ13C in marine environments—a polymodal foraging strategy. We integrate our results with results from other stable isotope studies, satellite telemetry, and flipper tags to evaluate potential foraging strategies. Understanding foraging strategies is essential for development of management plans for this endangered species that has suffered a 43% population decline over the last decade.  相似文献   

10.
The analysis of mitochondrial DNA in loggerhead sea turtles (Caretta caretta) from eight foraging grounds in the Mediterranean and the adjoining Atlantic revealed deep genetic structuring within the western Mediterranean. As a consequence, the foraging grounds off the North-African coast and the Gimnesies Islands are shown to be inhabited mainly by turtles of the Atlantic stocks, whereas the foraging grounds off the European shore of the western Mediterranean are shown to be inhabited mainly by turtles from the eastern Mediterranean rookeries. This structuring is explained by the pattern of sea surface currents and water masses and suggests that immature loggerhead sea turtles entering the western Mediterranean from the Atlantic and the eastern Mediterranean remain linked to particular water masses, with a limited exchange of turtles between water masses. As the north of the western Mediterranean comprises mostly individuals from the highly endangered eastern Mediterranean rookeries, conservation plans should make it a priority to reduce the mortality caused by incidental by-catch in these areas.  相似文献   

11.
To evaluate the effects of organized turtle watches on female sea turtles and their eggs, we quantified nesting behavior and hatchling production of loggerhead turtles ( Caretta caretta ) in south Brevard Country, Florida, U.S.A. We compared the duration of five phases of nesting behavior, the directness of the turtle's return path, rate of travel during return crawl, hatching success, and hatchling emergence success between experimental and control turtles. Experimental turtles nested while observed by an organized turtle watch group consisting of at least 15 people; control turtles were not observed by a turtle watch group. Experimental turtles spent significantly less time camouflaging nest sites than did control turtles. The duration of the other four phases of nesting behavior were not significantly different between the two groups. Experimental turtles also traveled less-direct paths during return crawls, although their rates of travel were not significantly different from those of control turtles. Hatching success and hatchling emergence success were not significantly different between experimental and control turtle nests in either year. Although turtle watch groups influenced nesting behavior, they were not found to be detrimental to hatchling production. Florida's turtle watch program is a means for garnering public support for sea turtle conservation through education, and it should continue.  相似文献   

12.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

13.
Loggerhead turtles nesting in the Mediterranean Sea exhibit remarkable genetic structuring. This paper tests the hypothesis that young loggerhead turtles from different rookeries do not distribute homogeneously among the major Mediterranean foraging grounds, due to a complex pattern of surface currents. We extracted long fragments of mitochondrial DNA from 275 stranded or bycaught juvenile turtles from six foraging grounds (Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, Adriatic Sea, northern Ionian Sea and southern Levantine Sea). We used a Bayesian mixed-stock analysis to estimate the contributions from rookeries in the Mediterranean, the North-west Atlantic and Cape Verde to the studied foraging grounds. Differences were found in the relative contribution of juvenile turtles of Atlantic and Mediterranean origin to each foraging ground. A decreasing proportion of Atlantic juveniles was detected along the main surface current entering the Mediterranean, with a high prevalence of turtles from eastern Florida in the Algerian basin and lower numbers elsewhere. In regard to the turtles of Mediterranean origin, juveniles from Libya prevailed in central and western Mediterranean foraging grounds other than the Algerian basin. Conversely, the Adriatic Sea was characterised by a large presence of individuals from western Greece, while the southern Levantine Sea was inhabited by a heterogeneous mix of turtles from the eastern Mediterranean rookeries (Turkey, Lebanon and Israel). Overall, the distribution of juveniles may be related to surface circulation patterns in the Mediterranean and suggests that fisheries might have differential effects on each population depending on the overlap degree between foraging and fishing grounds.  相似文献   

14.
Nine post-nesting loggerhead turtles (Caretta caretta) were tracked using sonic and radio telemetry. Tracking began immediately after the turtles left the beach and continued until contact was either lost or terminated. As sonic tags transmit continuously underwater, they were much more effective than the radio tags in determining the paths of the turtles. Radio tags transmit only at the surface and were useful in ascertaining submergence durations. For nine of the ten turtles tracked with sonic signals, the gross movement was away from the beach in a westerly direction. The tracking periods ranged from 3.35 to 8.25 h, while the straight-line movements ranged from 3.05 to 12.88 km, respectively. Sixty-seven percent of the submergence durations recorded were <3 min. This respiratory behavior suggests continuous swimming, and the paths of the turtles suggested directed movement offshore immediately after nesting. The gradual littoral slope and lack of nearshore structure in this part of the Gulf of Mexico could be contributing factors to the patterns of dispersal observed, as benthic structures provide resting and foraging habitat for loggerheads.  相似文献   

15.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

16.
Mitochondrial (mt) DNA control region sequences were analyzed for 249 Atlantic and Mediterranean loggerhead turtles (Carettacaretta Linnaeus, 1758) to elucidate nesting population structure and phylogeographic patterns. Ten haplotypes were resolved among individuals sampled between 1987 and 1993, from ten major loggerhead nesting areas in the region. Two distinct phylogenetic lineages were distinguished, separated by an average of 5.1% sequence divergence. Haplotype frequency comparisons between pairs of populations showed significant differentiation between most regional nesting aggregates and revealed six demographically independent groups, corresponding to nesting beaches from: (1) North Carolina, South Carolina, Georgia and northeast Florida, USA; (2) southern Florida, USA; (3) northwest Florida, USA; (4) Quintana Roo, Mexico; (5) Bahia, Brazil; and (6) Peloponnesus Island, Greece. The distribution of mtDNA haplotypes is consistent with a natal homing scenario, in which nesting colonies separated by a few hundred kilometers represent isolated reproductive aggregates. However, a strong exception to this pattern was observed in the first group defined by mtDNA data (North Carolina to northeast Florida), which included samples from four nesting locations spread across thousands of kilometers of coastline. These locations were characterized by a single haplotype in 104 out of 105 samples, providing inadequate resolution of population divisions. In view of the subdivisions observed elsewhere, we attribute the lack of differentiation between North Carolina and northeast Florida to recent colonization of these warm temperate coastlines (after the Wisconsin glaciation) not to ongoing gene flow among spatially distinct nesting locations. The relationships among observed haplotypes suggest a biogeographic scenario defined by climate, natal homing, and rare dispersal events. The redefined relationships among nesting aggregations in the western Atlantic region (southeastern USA and adjacent Mexico) prompt a reconsideration of management strategies for nesting populations and corresponding habitats in this region. Received: 28 October 1996 / Accepted: 24 October 1997  相似文献   

17.
This study is the first report of post-nesting migrations of loggerhead sea turtles (Caretta caretta) nesting in Sarasota County (Florida, USA), their most important rookery in the Gulf of Mexico (GOM). In total, 28 females (curved carapace length CCL between 82.2 and 112.0 cm) were satellite-tracked between May 2005 and December 2007. Post-nesting migrations were completed in 3–68 days (mean ± SD = 23 ± 16 days). Five different migration patterns were observed: six turtles remained in the vicinity of their nesting site while the other individuals moved either to the south-western part of the Florida Shelf (n = 9 turtles), the Northeast GOM (n = 2 turtles), the South GOM (Yucatán Shelf and Campeche Bay, Mexico, and Cuba; n = 5 turtles) or the Bahamas (n = 6 turtles). In average, turtles moved along rather straight routes over the continental shelf but showed more indirect paths in oceanic waters. Path analyses coupled with remote sensing oceanographic data suggest that most of long-distance migrants reached their intended foraging destinations but did not compensate for the deflecting action of ocean currents. While six out of seven small individuals (CCL < 90 cm) remained on the Florida Shelf, larger individuals showed various migration strategies, staying on the Florida Shelf or moving to long-distance foraging grounds. This study highlights the primary importance the Western Florida Shelf in the management of the Florida Nesting Subpopulation, as well as the need of multi-national effort to promote the conservation of the loggerhead turtle in the Western Atlantic. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Variation in environmental conditions at a foraging area or at a nesting rookery has the potential to impact reproductive output of green sea turtles (Chelonia mydas) by affecting food resources or the nesting substrate. In this paper we test whether turtles‘ physiological characteristics reflect variation in relevant environmental conditions. We did this by profiling metabolic and hormonal markers among (1) non-vitellogenic females from three different foraging areas and (2) nesting females from different rookeries and breeding seasons. Among the non-vitellogenic females, the highest plasma triglyceride concentrations (4.29 mmol/l) and the lowest plasma cholesterol concentrations (1.27 mmol/l) were found in non-vitellogenic females residing in Moreton Bay during the El Niño year of 1997. Furthermore, during 1997, these Moreton Bay females had higher plasma triglyceride and lower cholesterol concentrations than those recorded in non-vitellogenic females foraging at Heron Reef (triglyceride 1.22 mmol/l and cholesterol 4.53 mmol/l) and Shoalwater Bay (triglyceride 1.69 mmol/l and cholesterol 3.50 mmol/l) in the same year. Among nesting turtles, those nesting at Raine Island had low mean plasma triglyceride concentrations during the high density 1996 nesting season. For those nesting at Heron Island, the mean triglyceride concentrations were the lowest during the 1997 nesting season. This is the first time that hormone and metabolic markers have been used in concert to compare the physiological condition of nesting and foraging sea turtles and its relationship with the environment. Collectively, our data indicate that variation in the environmental conditions at both foraging and nesting areas are reflected at a physiological level. Moreover, our study indicates that turtles feeding during El Niño years are able to attain higher levels of body condition, and that physiological data combined with morphometric data is a useful proxy for assessing the condition of turtles in foraging areas.  相似文献   

19.
Thirty-four juvenile loggerhead sea turtles captured by trawling from the Charleston, South Carolina (USA), shipping channel (32°42′N; −79°47′W) between May 2004 and August 2007 were tagged with satellite transmitters to assess the extent to which they remained near the capture location given their collection along a seasonal migratory corridor. Seventy-five percent of juveniles were classified as seasonal residents. Migrants predominantly swam north in the spring and nomads wandered south in the summer, but predictive indicators for non-resident status were not identified. All but one juvenile generally remained south of 34°N, within 40 km of shore, and in waters <30 m deep throughout the year. Nine of 14 loggerhead sea turtles monitored during the winter remained exclusively over the continental shelf, three briefly occurred in oceanic habitats, and two foraged extensively in oceanic habitats. Residents distributed >15 km from shore between spring and autumn were three times as likely to occur in oceanic habitats in winter. Modest seasonal movements contrasted with adults tagged at similar latitudes and with juveniles tagged further north and suggest distinct foraging groups within a regional foraging ground.  相似文献   

20.
Satellite transmitters were deployed on ten green turtles (Chelonia mydas) nesting in Rekawa Sanctuary (RS-80.851°E 6.045°N), Sri Lanka, during 2006 and 2007 to determine inter-nesting and migratory behaviours and foraging habitats. Nine turtles subsequently nested at RS and demonstrated two inter-nesting strategies linked to the location of their residence sites. Three turtles used local shallow coastal sites within 60 km of RS during some or all of their inter-nesting periods and then returned to and settled at these sites on completion of their breeding seasons. In contrast, five individuals spent inter-nesting periods proximate to RS and then migrated to and settled at distant (>350 km) shallow coastal residence sites. Another turtle also spent inter-nesting periods proximate to RS and then migrated to a distant oceanic atoll and made forays into oceanic waters for 42 days before transmissions ceased. This behavioural plasticity informs conservation management beyond protection at the nesting beach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号