首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

2.
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

3.
GOAL, SCOPE AND BACKGROUND: Mercury (Hg) emission from combustion flue gas is a significant environmental concern due to its toxicity and high volatility. A number of the research efforts have been carried out in the past decade exploiting mercury emission, monitoring and control from combustion flue gases. Most recently, increasing activities are focused on evaluating the behavior of mercury in coal combustion systems and developing novel Hg control technologies. This is partly due to the new regulatory requirement on mercury emissions from coal-fired combustors to be enacted under the U.S. Title III of the 1990 Clean Air Act Amendments. The aim of this review work is to better understand the state-of-the-art technologies of flue gas mercury control and identify the gaps of knowledge hence areas for further opportunities in research and development. MAIN FEATURES: This paper examines mercury behaviors in combustion systems through a comprehensive review of the available literature. About 70 published papers and reports were cited and studied. RESULTS AND DISCUSSION: This paper summarizes the mechanisms of formation of mercury containing compounds during combustion, its speciation and reaction in flue gas, as well as subsequent mobilization in the environment. It also provides a review of the current techniques designed for real-time, continuous emission monitoring (CEM) for mercury. Most importantly, current flue gas mercury control technologies are reviewed while activated carbon adsorption, a technology that offers the greatest potential for the control of gas-phase mercury emissions, is highlighted. CONCLUSIONS AND RECOMMENDATIONS: Although much progress has been achieved in the last decade, techniques developed for the monitoring and control of mercury from combustion flue gases are not yet mature and gaps in knowledge exist for further advancement. More R&D efforts are required for the effective control of Hg emissions and the main focuses are identified.  相似文献   

4.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   

5.
Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to approximately 4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.  相似文献   

6.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

7.
ABSTRACT

The Electric Power Research Institute (EPRI) is conducting research to investigate mercury removal in utility flue gas using sorbents. Bench-scale and pilot-scale tests have been conducted to determine the abilities of different sor-bents to remove mercury in simulated and actual flue gas streams. Bench-scale tests have investigated the effects of various sorbent and flue gas parameters on sorbent performance. These data are being used to develop a theoretical model for predicting mercury removal by sorbents at different conditions. This paper describes the results of parametric bench-scale tests investigating the removal of mercuric chloride and elemental mercury by activated carbon.

Results obtained to date indicate that the adsorption capacity of a given sorbent is dependent on many factors, including the type of mercury being adsorbed, flue gas composition, and adsorption temperature. These data provide insight into potential mercury adsorption mechanisms and suggest that the removal of mercury involves both physical and chemical mechanisms. Understanding these effects is important since the performance of a given sorbent could vary significantly from site to site depending on the coal- or gas-matrix composition.  相似文献   

8.
Method 30B and the Ontario Hydro Method (OHM) were used to sample the mercury in the flue gas discharged from the seven power plants in Guizhou Province, southwest China. In order to investigate the mercury migration and transformation during coal combustion and pollution control process, the contents of mercury in coal samples, bottom ash, fly ash, and gypsum were measured. The mercury in the flue gas released into the atmosphere mainly existed in the form of Hg°. The precipitator shows a superior ability to remove Hgp (particulate mercury) from flue gas. The removal efficiency of Hg2+ by wet flue gas desulfurization (WFGD) was significantly higher than that for the other two forms of mercury. The synergistic removal efficiency of mercury by the air pollution control devices (APCDs) installed in the studied power plants is 66.69–97.56%. The Hg mass balance for the tested seven coal-fired power plants varied from 72.87% to 109.67% during the sampling time. After flue gas flowing through APCDs, most of the mercury in coal was enriched in fly ash and gypsum, with only a small portion released into the atmosphere with the flue gas. The maximum discharge source of Hg for power plants was fly ash and gypsum instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.

Implications: Method 30B and the Ontario Hydro Method (OHM) were used to test the mercury concentration in the flue gas discharged from seven power plants in Guizhou Province, China. The concentrations of mercury in coal samples, bottom ash, fly ash, and gypsum were also measured. By comparison of the mercury content of different products, we found that the maximum discharge source of Hg for power plants was fly ash and gypsum, instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.  相似文献   


9.
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of its Brunauer–Emmett–Teller (BET) surface area. Two simulated flue gas conditions, (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, that is, more than 87%, regardless of their BET surface area.

Implications: We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had mercury adsorption efficiency comparable to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.  相似文献   


10.
以蛭石、丝光沸石、膨润土及经改性后各物质为吸附剂,N2气氛下,在固定床实验台上进行了对烟气中单质汞脱除的实验研究,主要考察了温度的改变对改性矿物吸附剂脱除气态汞的影响。研究结果显示,膨润土、蛭石对汞的吸附基本不受温度的影响;未改性的吸附剂对汞的吸附能力均比较差;温度的提高有利于改性吸附剂对单质汞的脱除,说明改性后的吸附剂的脱汞过程以化学吸附为主;真正起作用的活性组分CeO2占据了丝光沸石的大部分表面积和空隙;丝光沸石经CuO改性前后吸附能力几乎未发生变化。  相似文献   

11.
Abstract

Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to ~4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.  相似文献   

12.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

13.
Abstract

An entrained-flow system has been designed and constructed to simulate in-flight mercury (Hg) capture by sorbent injection in ducts of coal-fired utility plants. The test conditions of 1.2-sec residence time, 140 °C gas temperature, 6.7 m/sec (22 ft/sec) gas velocity, and 0–0.24 g/m3 (0–15 lbs of sorbent per 1 million actual cubic feet of flue gas [lb/MMacf]) sorbent injection rates were chosen to simulate conditions in the ducts. Four kinds of sorbents were used in this study. Darco Hg-LH served as a benchmark sorbent with which Hg control capability of other sorbents could be compared. Also, Darco-FGD was used as a representative raw activated carbon sorbent. Two different copper chloride-impregnated sorbents were developed in our laboratory and tested in the entrained-flow system to examine the possibility of using these sorbents at coal-fired power plants. The test results showed that one of the copper chloride sorbents has remarkable elemental mercury (Hg0) oxidation capability, and the other sorbent demonstrated a better performance in Hg removal than Darco Hg-LH.  相似文献   

14.
用于气态零价汞转化的催化剂研究   总被引:4,自引:0,他引:4  
零价汞的高效去除是燃煤烟气汞污染控制过程中的关键环节。为了促进烟气中的零价汞转化为易于去除的氧化态汞,分别考察了在有HCl存在时,几种过渡金属氧化物(Cu、Fe、Mn、Co和Zr)对零价汞氧化的催化作用,以筛选出性能较好的催化组分;为提高催化剂的抗SO2性能,分别尝试了利用几种金属元素(Sr、Ce、W和Mo)对催化剂进行掺杂改性的方法。结果表明,锰氧化物的催化作用最好,其最佳使用温度在573 K左右;SO2对零价汞的催化氧化有明显抑制作用,在无SO2及1 400 mg/m3SO2时锰催化剂对零价汞催化氧化效率分别为93%和78%。而Mo改性的锰氧化物催化剂的抗硫性能大幅提高,在1 400 mg/m3SO2存在的情况下其对零价汞的催化氧化效率可达到90%以上,较其他改性元素高。  相似文献   

15.
分析湿法烟气脱硫系统的脱汞性能,对控制燃煤电厂的汞污染具有重要意义。利用安大略水法和吸附管法分别对某600 MW电厂湿法脱硫系统的进出口的烟气进行了采样,测量了烟气中各形态汞浓度,并分析了该系统对烟气总汞、气态氧化态汞的脱除效果以及对气态单质汞的影响。研究结果表明,安大略水法和吸附管法均能较为准确地测定湿法脱硫系统进出口烟气中的汞含量,测得入口和出口的氧化汞与平均值的相对误差的绝对值分别为3.5%和1.3%;入口和出口的单质汞与平均值相对误差的绝对值分别为16.6%和3.3%。其中吸附管法操作相对简单。通过湿法烟气脱硫系统后,烟气中氧化态汞的浓度可下降87.5%,其中约67.5%的氧化态汞被湿法脱硫系统脱除,约20%的氧化态汞在脱硫浆液的还原作用下被还原为单质汞,导致脱硫系统出口的单质汞浓度高于入口。  相似文献   

16.
U.S. Environmental Protection Agency (EPA) Method 26A is the recommended procedure for capturing and speciating halogen (X2) and hydrogen halide (HX) stack emissions from combustion sources. Previous evaluation studies of Method 26A have focused primarily on hydrogen chloride (HCl) speciation. Capture efficiency, bias, and the potential interference of Cl2 at high levels (> 20 ppm [microgram/m3]) and NH4Cl in the flue gas stream have been investigated. It has been suggested that precise Cl2 measurement and accuracy in quantifying HX or X2 using Method 26A are difficult to achieve at Cl2 concentrations < 5 ppm; however, no performance data exist to support this. Coal contains low levels of Cl, in the range of 5-2000 ppmw, which results in the presence of HCl and Cl2 in the products of combustion. HCl is the predominant Cl compound formed in the high-temperature combustion process, and it persists in the gas as the products of combustion cool. Concentrations of Cl2 in coal combustion flue gas at stack temperatures typically do not exceed 5 ppm. For this research, bench-scale experiments using simulated combustion flue gas were designed to validate the ability of Method 26A to speciate low levels of Cl2 accurately. This paper presents the results of the bench-scale tests. The effect of various flue gas components is discussed. The results indicate that SO2 is the only component in coal combustion flue gas that has an appreciable effect on Cl2 distribution in Method 26A impingers, and that Method 26A cannot accurately speciate HCl and Cl2 in coal combustion flue gas without modification.  相似文献   

17.
煤粉炉掺烧干化污泥的污染物排放研究   总被引:2,自引:0,他引:2  
结合某电厂420 t/h四角煤粉炉掺烧污泥项目的实验室分析测试,了解煤粉掺烧不同含水率不同比例的干化污泥条件下烟气中污染物和灰渣中重金属的排放特性.结果表明,在实验研究配比和燃烧的条件下,大部分重金属元素Pb、Cu、Cr和Ni残留在灰渣中,Zn、Cd部分残留在灰渣中, As、Hg和Se等易挥发元素释放到烟气中,在灰渣中的含量很小.掺烧污泥后,灰渣中的重金属含量较单烧单煤都有了一定幅度的升高,Zn的含量是单煤的2倍,其余重金属是单煤的1.1~1.2倍.3种不同的掺混比例之间的污染气体排放浓度基本相似.烟气中主要污染物及重金属浓度可以满足现行国家标准.与单烧单煤相比,CO、HCl以及其他有机气体排放浓度基本相同;NH3的排放浓度较单煤有所升高;SO2、NOx和CO2排放浓度略有降低;飞灰浓度有所升高.烟气中的重金属,Hg含量升高了30%,Pb含量约为单煤的4.3~4.8倍.以上研究结果可为环保达标和飞灰利用提供基础数据.  相似文献   

18.
The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly. Implications: We investigated the influence of factors determining the nitrogen oxides (NOx) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NOx emissions the most.  相似文献   

19.
This paper evaluates the speciation and partitioning of mercury in two Spanish pulverised coal combustion power plants (PP1 and PP2), equipped with wet limestone-based flue gas desulphurisation facilities (FGD) operating with forced oxidation and re-circulation of FGD water streams. These plants are fed with coal (PP1) and coal/pet-coke blends (PP2) with different mercury contents. The behaviour, partitioning and speciation of Hg were found to be similar during the combustion processes but different in the FGD systems of the two power plants. A high proportion (86-88%) of Hg escaped the electrostatic precipitator in gaseous form, Hg2+ being the predominant mercury species (68-86%) to enter the FGD. At this point, a relatively high total Hg retention (72% and 65%) was achieved in the PP1 and PP2 (2007) FGD facilities respectively. However, during the second sampling campaign for PP2 (2008), the mercury removal achieved by the FGD was much lower (26%). Lab-scale tests point to liquid/gas ratio as the main parameter affecting oxidised mercury capture in the scrubber. The partitioning of the gaseous mercury reaching the FGD system in the wastes and by-products differed. In the low mercury input power plant (PP1) most of the mercury (67%) was associated with the FGD gypsum. Moreover in PP2 a significant proportion of the gaseous mercury reaching the FGD system remained in the aqueous phase (45%) in the 2007 sampling campaign while most of it escaped in 2008 (74%). This may be attributed to the scrubber operating conditions and the different composition and chemistry of the scrubber solution probably due to the use of an additive.  相似文献   

20.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号