首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

2.
Coastal catchments in British Columbia, Canada, experience a complex mixture of rainfall‐ and snowmelt‐driven contributions to flood events. Few operational flood‐forecast models are available in the region. Here, we integrated a number of proven technologies in a novel way to produce a super‐ensemble forecast system for the Englishman River, a flood‐prone stream on Vancouver Island. This three‐day‐ahead modeling system utilizes up to 42 numerical weather prediction model outputs from the North American Ensemble Forecast System, combined with six artificial neural network‐based streamflow models representing various slightly different system conceptualizations, all of which were trained exclusively on historical high‐flow data. As such, the system combines relatively low model development times and costs with the generation of fully probabilistic forecasts reflecting uncertainty in the simulation of both atmospheric and terrestrial hydrologic dynamics. Results from operational testing by British Columbia's flood forecasting agency during the 2013‐2014 storm season suggest that the prediction system is operationally useful and robust.  相似文献   

3.
ABSTRACT: A reliable forecasting model is essential in real‐time flood forecasting for reducing natural damage. Efforts to develop a real‐time forecasting model over the past two decades have been numerous. This work applies the Grey model to forecast rainfall and runoff owing to the model's relative ability to predict the future using a small amount of historical data. Such a model significantly differs from the stochastic and deterministic models developed previously. Ten historical storm events from two catchment areas in northern Taiwan are selected to calibrate and verify the model. Results in this study demonstrate that the proposed models can reasonably forecast runoff one to four hours ahead, if the Grey error prediction method is further used to update the output of the model.  相似文献   

4.
ABSTRACT: In this paper a numerical model for flood propagation in urban areas is proposed. It has been applied to evaluate flooding hydraulic characteristics in terms of potential flood elevations, depths, and inundated areas. Furthermore, the algorithm efficiency and the consequent reduced computation time allow the use of the hydraulic model as a part of a more complex system for civil protection actions, planning, and management. During flood events, the transportation network plays a main role both in rescuing people when they are more vulnerable and in moving people and materials from and toward affected areas. The reduced efficiency of this transportation network is evaluated based on a least‐flood‐risk path‐finding algorithm. The results of a case study concerning the northern part of the city of Rome, show that the numerical model for unsteady flow in open channel networks achieves the proposed aims. It has proven to be able to describe the flood hydraulic characteristics and to be suitable for real‐time flood emergency management in urban areas.  相似文献   

5.
ABSTRACT: The reliable sizing of reservoirs is a very important task of hydraulic engineering. Although many reservoirs throughout the world have been designed using Rippl's mass curves with historical inflow volumes at the dam site, this technique is now considered outdated. In this paper, synthetic series of monthly inflows are used as an alternative to historical inflow records. These synthetic series are generated from stochastic SARIMA (Seasonal Autoregressive Integrated Moving Average) models. The analyzed data refer to the planned Almopeos Reservoir on the Almopeos River in Northern Greece with 19‐year monthly inflow series. The analysis of this study demonstrates the ability of SARIMA models, in conjunction with the adequate transformation, to forecast monthly inflows of one or more months ahead and generate synthetic series of monthly inflows that preserve the key statistics of the historical monthly inflows and their persistence Hurst coefficient K. The forecasted monthly inflows would be of help in evaluating the optimal real time reservoir operation policies and the generated synthetic series of monthly inflows can be used to provide a probabilistic framework for reservoir design and to cope with the situation where the design horizon of interest exceeds the length of the historical inflow record.  相似文献   

6.
Hummel, Ryan, Jennifer G. Duan, and Shiyan Zhang, 2012. Comparison of Unsteady and Quasi‐Unsteady Flow Models in Simulating Sediment Transport in an Ephemeral Arizona Stream. Journal of the American Water Resources Association (JAWRA) 48(5): 987‐998. DOI: 10.1111/j.1752‐1688.2012.00663.x Abstract: Hydrodynamic and sediment transport models are useful engineering tools for predicting unsteady flood flow and sediment transport. Many models such as HEC‐RAS, HEC‐6, and IALLUVIAL apply quasi‐unsteady flow model, whereas others apply the unsteady flow model. It remains unknown if a quasi‐unsteady flow model is sufficiently accurate for simulating sediment transport in rapidly varied unsteady flood events, especially in ephemeral rivers in arid and semiarid regions. This study compared the quasi‐unsteady HEC‐RAS 4.1 model with one‐dimensional (1D) Finite Volume Method (FVM) based model in simulating flood flow and sediment transport in the Pantano Wash, a dryland river in the state of Arizona. The objective is to determine which sediment transport method is appropriate in predicting bed elevation changes in an ephemeral stream, Pantano Wash, and if an unsteady model is more accurate than a quasi‐unsteady flow model in predicting sediment transport. Results showed that the quasi‐unsteady HEC‐RAS model and the 1D FVM yielded similar results of bed degradation and aggradation for this dryland stream, although the FVM model predicted better flood hydrographs. Among the seven sediment transport formulas embedded in HEC‐RAS, Yang’s and Engelund‐Hansen’s equations gave the best matches with the field measurements for this particular case study.  相似文献   

7.
ABSTRACT: A network flow algorithm has been developed for the optimization of real‐time operation of a multiple reservoir system. Two purposes have been considered in the operation: flood control and hydropower generation. A special network structure was developed which allows the consideration of river routing. A multiobjective formulation is utilized thus allowing generation of a non‐dominated curve. The effect of imperfect forecast on the performance of the real‐time operation model is also evaluated. An application is made to a subsystem of the Brazilian hydroelectric system, located in the Paranapanema river basin. In this case study, the model showed good performance under the largest flood of the historical records.  相似文献   

8.
Ahn, Jae Hyun and Hyun Il Choi, 2013. A New Flood Index for Use in Evaluation of Local Flood Severity: A Case Study of Small Ungauged Catchments in Korea. Journal of the American Water Resources Association (JAWRA) 49(1): 1‐14. DOI: 10.1111/jawr.12025 Abstract: The aim of this article is to develop a new index measuring the severity of floods in small ungauged catchments for initial local flood information by the regression analysis between the new flooding index and rainfall patterns. Although a rapid local flood caused by heavy storm in a short period of time is now one of common natural disasters worldwide, such a sudden and violent hydrologic event is difficult to forecast. As local flooding rises rapidly with little or no advance warning, the key to local flood forecasting is to quickly identify when and where local flooding above a threshold is likely to occur. The new flooding index to characterize local floods is measured by the three normalized relative severity factors for the flood magnitude ratio, the rising curve gradient, and the flooding duration time, quantifying characteristics of flood runoff hydrographs. The new flooding index implemented for the two selected small ungauged catchments in the Korean Peninsula shows a very high correlation with logarithm of the 2‐h maximum rainfall depth. This study proposes 30 mm of rainfall in a 2‐h period as a basin‐specific guidance of precaution for the incipient local flooding in the two study catchments. It is expected that the best‐fit regression equation between the new flooding index and a certain rainfall rate can provide preliminary observations, the flood threshold, and severity information, for use in a local flood alert system in small ungauged catchments. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

9.
ABSTRACT: The flood hydroclimatology of the Grand Forks flood of April 1997, the most costly flood on a per capita basis for a major metropolitan area in United States history, is analyzed in terms of the natural processes that control spring snowmelt flooding in the region. The geomorphological characteristics of the basin are reviewed, and an integrated assessment of the hydroclimatological conditions during the winter of 1996 to 1997 is presented to gain a real‐world understanding of the physical basis of this catastrophic flood event. The Grand Forks flood resulted from the principal flood‐producing factors occurring at either historic or extreme levels, or at levels conducive to severe flooding. Above normal fall precipitation increased the fall soil moisture storage and reduced the spring soil moisture storage potential. A concrete frost layer developed that effectively reduced the soil infiltration capacity to zero. Record snowfall totals and snow cover depths occurred across the basin because of the unusual persistence of a blocking high circulation pattern throughout the winter. A severe, late spring blizzard delayed the snowmelt season and replenished the snow cover to record levels for early April. This blizzard was followed by a sudden transition to an extreme late season thaw due to the abrupt breakdown of the blocking circulation pattern. The presence of river ice contributed to backwater effects and affected the timing of tributary inflows to the main stem of the Red River. Only the absence of spring rains prevented an even more catastrophic flood disaster from taking place. This paper contributes to our understanding of the flood hydroclimatology of catastrophic flood events in an unusual flood hazard region that possesses relatively flat terrain, a north‐flowing river, and an annual peak discharge time series dominated by spring snowmelt floods.  相似文献   

10.
The transport and fate of two plunging tributaries, Onondaga and Ninemile Creeks, in Onondaga Lake, New York, are quantified based on application of hydrodynamic/transport models. Short‐term transport is simulated with a three‐dimensional Estuary Lake and Coastal Ocean Model (ELCOM), while the longer term fate is represented by a previously validated one‐dimensional model (UFILS4). The validation of ELCOM for the vertical distribution of tributary inflow into the lake's water column is demonstrated for four dye tracer experiments. The models are applied for three years to represent the dynamics of transport and fate for the two tributaries, with ELCOM predictions serving as input for UFILS4. The models together quantify the distribution of these inflows between the upper mixed layer (UML) and stratified depths, and the subsequent transport from stratified depths to the UML by vertical mixing. Substantial short‐term variations are predicted for both tributaries in response to variability in hydrology and weather. Increased inflow to the UML is predicted for high runoff periods. The fraction of Ninemile Creek's inflow directly entering the UML is predicted to be 50% greater than for Onondaga Creek due to Ninemile's lower negative buoyancy. The plunging phenomenon has important water quality implications, by reducing the effective loading to the UML, particularly for constituents with large rates of loss/transformation relative to the rate of vertical transport from stratified depths.  相似文献   

11.
While deterministic forecasts provide a single realization of potential inundation, the inherent uncertainty associated with forecasts also needs to be conveyed for improved decision support. The objective of this study was to develop an ensemble framework for the quantification and visualization of uncertainty associated with flood inundation forecast maps. An 11‐member ensemble streamflow forecast at lead times from 0 to 48 hr was used to force two hydraulic models to produce a multimodel ensemble. The hydraulic models used are (1) the International River Interface Cooperative along with Flow and Sediment Transport with Morphological Evolution of Channels solver and (2) the two‐dimensional Hydrologic Engineering Center‐River Analysis System. Uncertainty was quantified and augmented onto flood inundation maps by calculating statistical spread among the ensemble members. For visualization, a series of probability flood maps conveying the uncertainty in forecasted water extent, water depth, and flow velocity was disseminated through a web‐based decision support tool. The results from this study offer a framework for quantifying and visualizing model uncertainty in forecasted flood inundation maps.  相似文献   

12.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

13.
We present a 576‐year tree‐ring‐based reconstruction of streamflow for northern Utah's Weber River that exhibits considerable interannual and decadal‐scale variability. While the 20th Century instrumental period includes several extreme individual dry years, it was the century with the fewest such years of the entire reconstruction. Extended droughts were more severe in duration, magnitude, and intensity prior to the instrumental record, including the most protracted drought of the record, which spanned 16 years from 1703 to 1718. Extreme wet years and periods are also a regular feature of the reconstruction. A strong early 17th Century pluvial exceeds the early 20th Century pluvial in magnitude, duration, and intensity, and dwarfs the 1980s wet period that caused significant flooding along the Wasatch Front. The long‐term hydroclimatology of northern Utah is marked by considerable uncertainty; hence, our reconstruction provides water managers with a more complete record of water resource variability for assessment of the risk of droughts and floods for one of the largest and most rapidly growing population centers in the Intermountain West.  相似文献   

14.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   

15.
ABSTRACT: Fifty‐four Wisconsin wetlands were surveyed in spring 1996 to determine relationships between macroinvertebrate community structure and a suite of 11 environmental attributes. Canonical correspondence analysis (CCA) showed that, after alkalinity, hydroperiod was the next most significant environmental factor influencing macroinvertebrate community structure within the wetlands sampled. CCA and direct gradient biplots were used to identify indicator taxa characteristic of the spring macroinvertebrate communities in persistent and ephemeral wetlands, and taxa characteristic of semi‐terrestrial habitats adjacent to wetlands. Two models were developed to permit the prediction of a wetland's hydroperiod class. One model assigns a range of probabilities that a wetland has a hydroperiod longer or shorter than eight months based on the occurrence or abundance of fairy shrimp, mayflies, scuds, mosquitoes, and phantom midges. A second model predicts that a wetland's hydroperiod is longer or shorter than five months based on the joint occurrences of seven persistent indicator taxa. Data used in both models were derived from a rapid bioassessment of three shoreline D‐frame net sweeps. The use of a coarse level taxonomic identification (primarily order and family) allows the approach to be performed in the field or laboratory. The macroinvertebrate models allow a manager to estimate a wetland's hydroperiod when long term water duration records do not exist. This ability is important to water resource managers because hydroperiod classification (i.e., water permanency) is one criterion used in differentiating wetlands from lakes in Wisconsin and because Wisconsin's legal system affords lakes substantially greater protection than wetlands.  相似文献   

16.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

17.
Abstract: Tree basal growth in response to flooding regime was evaluated at a 5.2‐ha bottomland forest along the Olentangy River in central Ohio. Tree‐ring analysis was used to develop a 14‐year basal area increment (BAI) (cm2/year) series for 42 canopy trees (representing 10 species) throughout the bottomland. Mean annual BAI was evaluated relative to the frequency and duration of bankfull (>70 m3/s) and high‐flood (>154 m3/s) river discharge for a given water year (October 1‐September 30) and growing season (April 1‐September 30). A significant polynomial relationship was detected between the number of days of high‐flood river discharge over a combined two‐year period (Year i + Year i ? 1) and mean annual BAI. No significant relationships were detected when only the concurrent‐year or previous‐year flood regimes were considered or when growing season was considered. A similar relationship was detected when duration of high‐flood discharge days and BAI were both evaluated in two‐year increments (Year i + Year i ? 1). Mean annual BAI was most influenced by boxelder (Acer negundo) which was the dominant species and exhibited strong agreement with the overall BAI series. In each case, the resulting parabolic curve of tree basal growth in response to flooding suggests an optimal number of flooding days, a response to perturbation consistent with the subsidy‐stress model. Dendrochronology may be a useful tool for managers looking to restore environmental flows to regulated rivers.  相似文献   

18.
ABSTRACT: A flood control reservoir protects valuable developments on the downstream flood plain by storing flood waters and releasing them at a rate that will reduce the downstream damage. The water surface level of the flood pool behind the dam can fluctuate considerably during the occurrence of a large magnitude flood causing severe impacts on shoreline vegetation and water based recreation facilities located in the flood pool. A mathematical simulation model describing shoreline vegetative succession in response to flooding is presented. Plant species are grouped into ecologically similar compartments. Differential equations describing compartment intrinsic growth, intraspecies competition, interspecies competition, and other growth limiting factors are solved numerically. The model is used to evaluate the impacts of various operating policies on plant succession for a new reservoir in Central Iowa.  相似文献   

19.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   

20.
ABSTRACT. In the last decade much research has been devoted to applying the systems analysis approach to water resources problems. A popular research goal has been determination of the “best” method of operating a multipurpose reservoir. The goal of this study was to derive the economically optimum flood control diagram for a multipurpose reservoir by systems analysis. The technique employed to optimize the flood control diagram was programmed so that the optimization process could be applied to other multipurpose reservoirs. Two computer programs developed at the U.S. Army Corps of Engineers' Hydrologic Engineering Center were utilized with modifications to simulate the operation of Folsom Reservoir in central California. Economic analyses were incorporated along with an optimization technique into the reservoir operations program; and the resultant program was capable of routing a sequence of monthly reservoir inflows, computing benefits for various flood control diagrams (as dictated by the optimization procedure), and selecting the economically optimum flood control diagram. The univariate gradient technique was the optimization procedure employed. The two computer programs are on file at the Hydrologic Engineering Center in Davis, California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号