首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water availability risk is a local issue best understood with watershed‐scale quantification of both withdrawal and consumptive demands in the context of available supply. Collectively, all water use sectors must identify, understand, and respond to this risk. A highly visual and computationally robust decision support tool, Water Prism, quantitatively explores mitigation responses to water risk on both a facility‐level and basin‐aggregated basis. Water Prism examines a basin water balance for a 40‐ to 60‐year planning horizon, distinguishes among water use sectors, and accounts for ecosystem water needs. The 2012 Texas State Water Plan was used to apply Water Prism to the Big Cypress‐Sulphur Basin (Texas). The case study showed Water Prism to be an accurate and convenient tool to provide fine‐scale understanding of water use in the context of available supply, evaluate multi‐sector combinations of conservation strategies, and quantify the effects of future demands and water availability. Analyses demonstrated water availability risks for rivers and reservoirs can vary within a basin and must be calculated independently, simulation of water balance conditions can help illuminate potential impacts of increasing demands, and scenario simulations can be used to evaluate relative conservation efficacy of different water resource management strategies for each sector. Based on case study findings, Water Prism can serve as a useful assessment tool for regional water planners.  相似文献   

2.
Ensuring an adequate, reliable, clean, and affordable water supply for citizens and industries requires informed, long-range water supply planning, which is critically important for water security. A balance between water supply and demand must be considered for a long-term plan. However, water demand projections are often highly uncertain. Climate change could impact the hydrologic processes, and consequently, threaten water supply. Thus, understanding the uncertainties in future water demand and climate is critical for developing a sound water supply plan. In Illinois, regional water supply planning attempts to explore the impacts of future water demand and climate on water supply using scenario analyses and hydrologic modeling. This study is aimed at developing a water supply planning framework that considers both future water demand and climate change impacts. This framework is based on the Soil and Water Assessment Tool to simulate the watershed hydrology and conduct scenario analyses that consider the uncertainties in both future water demand and climate as well as their impacts on water supply. The framework was applied to water supply planning efforts in the Kankakee River watershed. The Kankakee River watershed model was calibrated and validated to observed streamflow records at four long-term United States Geological Survey streamflow gages. Because of the many model parameters involved, the calibration process was automated and was followed by a manual refinement, resulting in good model performance. Long-range water demand projections were prepared by the Illinois State Water Survey. Six future water demand scenarios were established based on a suite of assumptions. Climate scenarios were obtained from the Coupled Model Intercomparison Projection Phase 5 datasets. Three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, are used in the study. The scenario simulation results demonstrated that climate change appears to have a greater impact on water availability in the study area than water demand. The framework developed in this study can also be used to explore the impacts of uncertainties of water demand and climate on water supply and can be extended to other regions and watersheds.  相似文献   

3.
This study assesses the water availability and the water scarcity based on the hydrologic behavior under different weather conditions and crop coverages in an irrigated agricultural area of Rincon Valley in New Mexico using the SWAT (Soil and Water Assessment Tool) model. Two spatial crop coverages included normal (2008) and dry (2011) years with 14 different crop sets for each year. The SWAT was applied to generate the five essential indicators (surface flow, evapotranspiration, soil water, groundwater recharge, and irrigation water) to evaluate the integrated water availability based on hydrologic response units (HRUs) along with the Arrey Canal to supply irrigation water in the crop areas. The water availability index scores (0–1 range with 1 being the most available and 0 the least available) of alfalfa, corn, cotton, and pecans were 0.21, 0.56, 0.91, and 0.20, respectively, in the normal year and 0.16, 0.78, 0.88, and 0.24, respectively, in the dry year. In the dry year, water scarcity values were high in mostly alfalfa areas, whereas cotton areas have mostly no stress with good water availability. The major water users of crops, ranked in order, were alfalfa, pecans, cotton, and corn. During the dry year, water availability showed to be balanced in terms of water supply and demand by controlling crop patterns from reducing alfalfa acreage by 12% and increasing cotton acreage by 13%.  相似文献   

4.
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase.  相似文献   

5.
Water stress in Northern China is characterized with major, inefficient irrigation water use and rapidly growing non-agricultural water demands, as well as limited water quantity and declining water quality. Water use in the region is undergoing transfer from agricultural to municipal and industrial sectors. Currently, part of the economic loss and environmental damage due to water stress can be considered as a consequence of water transfer failures, including the current transfers, which hurt farmers' livelihood and income, and the needed transfers, which industry and cities have been waiting for but have not received. This paper starts with a discussion of the causes of water stress in Northern China, which is fundamental to understand the necessity and complexity of agricultural water transfers. Following that, it reviews water transfers in Northern China as a cause for concern over the social stability, economy and environment of the region. Based on an integrated analysis of economic, environmental, fiscal and social implications, this paper begins by identifying critical barriers to smooth water redistribution; and ends with implications for policy reforms, ensuring that farmers can and will save water. It is concluded that the decisions of water reallocation under water stress should be shared by communities at all levels, from the local to the national, to ensure equal access of water, especially the availability of the basic water need for all groups.  相似文献   

6.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

7.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

8.
Tsai, Yushiou, Sara Cohen, and Richard M. Vogel, 2011. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies. Journal of the American Water Resources Association (JAWRA) 47(4):687‐701. DOI: 10.1111/j.1752‐1688.2011.00534.x Abstract: We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather‐sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low‐water‐demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields.  相似文献   

9.
Li, Y.P. and G.H. Huang, 2011. Planning Agricultural Water Resources System Associated With Fuzzy and Random Features. Journal of the American Water Resources Association (JAWRA) 47(4):841‐860. DOI: 10.1111/j.1752‐1688.2011.00558.x Abstract: More and more regions where demand outstrips water resources availability have suffered from chronic severe shortages. It is particularly aggravated for agricultural irrigation systems where more water is necessary to support the rapidly increasing population and speedily developing economy. In this study, a two‐stage fuzzy‐stochastic programming (TFSP) method is developed for planning agricultural water resources management system in more efficient and sustainable ways. The developed method can address uncertain parameters described as probability distributions and fuzzy sets. It can also be used for analyzing various policy scenarios that are associated with different levels of economic consequences since penalties are exercised with recourse actions against any infeasibility. The developed method is applied to agricultural water‐resources management planning of the Zhangweinan River Basin, China. Solutions under various α‐cut levels and fuzzy dominance indices can be generated by solving a series of deterministic submodels, which can help determine optimized crop‐target values that could hedge appropriately against future available water levels. The results are helpful for water resources managers in not only making decisions of crop irrigation but also gaining insight into the tradeoffs between economic objective and system‐failure risk.  相似文献   

10.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   

11.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   

12.
Ensuring food security has been one of the major national priorities of Bangladesh since its independence in 1971. Now, this national priority is facing new challenges from the possible impacts of climate change in addition to the already existing threats from rapid population growth, declining availability of cultivable land, and inadequate access to water in the dry season. In this backdrop, this paper has examined the nature and magnitude of these threats for the benchmark years of 2030 and 2050. It has been shown that the overall impact of climate change on the production of food grains in Bangladesh would probably be small in 2030. This is due to the strong positive impact of CO2 fertilization that would compensate for the negative impacts of higher temperature and sea level rise. In 2050, the negative impacts of climate change might become noticeable: production of rice and wheat might drop by 8% and 32%, respectively. However, rice would be less affected by climate change compared to wheat, which is more sensitive to a change in temperature. Based on the population projections and analysis of future agronomic innovations, this study further shows that the availability of cultivable land alone would not be a constraint for achieving food self-sufficiency, provided that the productivity of rice and wheat grows at a rate of 10% or more per decade. However, the situation would be more critical in terms of water availability. If the dry season water availability does not decline from the 1990 level of about 100 Bm3, there would be just enough water in 2030 for meeting both the agricultural and nonagricultural needs. In 2050, the demand for irrigation water to maintain food self-sufficiency would be about 40% to 50% of the dry season water availability. Meeting such a high agricultural water demand might cause significant negative impacts on the domestic and commercial water supply, fisheries, ecosystems, navigation, and salinity management.  相似文献   

13.
ABSTRACT: Rapid population growth in the metropolitan area of Denver, Colorado, is causing conflicts over water use. Two cities, Thomton and Westminster, have begun condemnation proceedings against three irrigation companies to secure agricultural water rights for municipal use. This is the first condemnation proceeding against irrigation water rights for municipal use. Should the suit succeed, over 30,000 acres of presently irrigated land will lose its water supply. There are about four hundred landowners in the area; two hundred of these are commercial farmers, including truck, dairy and specialty farms. Total agricultural production amounts to about $8 million per year. About 561 jobs related to agriculture will disappear along with about $4 million in not income. Only 6.4 percent of the farmland along the Front Range is irrigated. Continued urban growth will put pressure on the water supply of much of this land. The interested parties of the region should cooperate to lessen the impact of urban growth on agricultural lands and water by forming a metropolitan water district. Such a district could share costs of development of additional municipal water and develop systems where municipalities would recycle waste water back to the irrigated lands.  相似文献   

14.
The availability of freshwater is a prerequisite for municipal development and agricultural production, especially in the arid and semiarid portions of the western United States (U.S.). Agriculture is the leading user of water in the U.S. Agricultural water use can be partitioned into green (derived from rainfall) and blue water (irrigation). Blue water can be further subdivided by source. In this research, we develop a hydrologic balance by 8‐Digit Hydrologic Unit Code using a combination of Soil and Water Assessment Tool simulations and available human water use estimates. These data are used to partition agricultural groundwater usage by sustainability and surface water usage by local source or importation. These predictions coupled with reported agricultural yield data are used to predict the virtual water contained in each ton of corn, wheat, sorghum, and soybeans produced and its source. We estimate that these four crops consume 480 km3 of green water annually and 23 km3 of blue water, 12 km3 of which is from groundwater withdrawal. Regional trends in blue water use from groundwater depletion highlight heavy usage in the High Plains, and small pockets throughout the western U.S. This information is presented to inform water resources debate by estimating the cost of agricultural production in terms of water regionally. This research illustrates the variable water content of the crops we consume and export, and the source of that water.  相似文献   

15.
ABSTRACT: The population in the Jemez y Sangre Water Planning Region of New Mexico has reached the point at which the demand for water exceeds available supplies, particularly when precipitation is below average, as has frequently occurred in recent years. The desire to develop a sustainable water supply that relies on renewable supplies in wet years and preserves the water in storage for times of drought motivated a diverse set of stakeholders in the region to participate in regional water planning. The planning effort culminated in development of the Jemez y Sangre Regional Water Plan, which was adopted by municipal and county governments in the region. The plan assesses and compares water supply and demand in the region and recommends alternatives for protecting and restoring the existing water supply and addressing the pending gap between supply and demand anticipated by the year 2060. To convey to decision makers the alternatives available to solve the future water shortage, option charts were developed to portray the amount of water that could be obtained or conserved through their implementation. The option charts show that the projected gap between supply and demand cannot be met through one alternative only, but will require a combination of alternatives.  相似文献   

16.
Abstract: The population of Collier and Lee Counties in southwestern Florida has increased 11‐fold from 1960 to 2004 with a concomitant increase in freshwater demand. Water levels and salinity within the water table aquifer over the past two to three decades have generally been stable, with more monitoring wells showing statistically significant temporal increases in water level than decreases. Residential development has had a neutral impact on the water table aquifer because the total annual evapotranspiration of residential communities is comparable to that of native vegetation and less than that of most agricultural land uses. Public water supply systems and private wells also result in net recharge to the water table aquifer with water produced from deeper aquifers. Confined freshwater aquifers have overall trends of decreasing water levels. However, with the exception of the mid‐Hawthorn aquifer, water levels in most areas recover to near background levels each summer wet season. Freshwater resources in humid subtropical areas, such as southwestern Florida, are relatively robust because of the great aquifer recharge potential from the excess of rainfall over ET during the wet season. Proper management can result in sustainable water resources.  相似文献   

17.
ABSTRACT: A national and interregional programming model was used in projecting the impacts of alternative energy policies and prices on agricultural production, land use, and irrigation. The alternatives analyzed include (a) natural gas deregulation, (b) natural gas curtailment, (c) doubled energy prices, and (d) tripled energy prices. These alternatives are compared with a base alternative where prices and conditions are at normal levels. Restraints in the model control availability of water, land, nitrogen fertilizers, and energy. Water production functions were used to adjust water use to conform with projected energy prices and policies. Natural gas curtailment would have the largest effect on nitrogen use on irrigated land. Values or shadow prices for lands that remains in irrigation would increase under all of the alternatives because of reduced supply. Increased energy prices generally would increase use of surface water for irrigation and reduce use of ground water due to higher pumping costs. Reductions of 50 percent or more in ground water use would occur in the South Central and Western regions of the United States. Water supply prices increase under all of the alternatives; with the amount varying by regions and the policy or price situation.  相似文献   

18.
Annual water storage in a 5.3 ha, polyethylene-lined, off-stream irrigation reservoir in northern Alabama, USA, resulted in marked improvement in water quality. Results of three-year monitoring from June 1999 to May 2002 indicate that the relatively static conditions of the reservoir enhanced settling of suspended particles by 85% (from 14.4 to 2.1 mg TSS/L) that cleared the water and increased sunlight penetration. The organic and inorganic particles that settled to the bottom removed up to 88% of the nutrients and other chemical substances from the water. Nutrients remaining in the water column were rapidly assimilated by phytoplankton algae. With the basin sealed at the bottom and no runoff input there was limited opportunity for nutrients or other substances to enter the reservoir in quantities that would adversely affect water quality. Consequently, reservoir water was found to be of high quality and suitable as a raw water supply. Non-traditional, off-stream storage reservoirs such as described in this paper may be uniquely suited for agricultural irrigation and public water supply in regions such as southeastern US that experience relatively frequent drought conditions but have relatively abundant long-term annual rainfall.  相似文献   

19.
Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Draa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability.  相似文献   

20.
We compared two methods of estimating crop water consumption to assess whether remote sensing techniques provide consumptive use (CU) estimates commensurate with conventional methods. Using available historical satellite and meteorological data, we applied Mapping EvapoTranspiration at high Resolution using Internalized Calibration (METRIC) to 317,455 ha in the South Platte basin, in northeastern Colorado, for the 2001 irrigation season. We then compared these derived CU estimates with values calculated by using the Colorado Water Conservation Board's South Platte Decision Support System StateCU model. Evaluating the data by irrigation ditch service area, we disaggregated the output to allow for comparison by service area size, crop type, irrigation method, water supply source, and water availability. We concluded that METRIC is a suitable alternative to StateCU in the South Platte basin and could help to identify areas with inhibited crop growth or deficit irrigation practices. In addition, METRIC could be used as a complement to StateCU to refine StateCU model parameters, allowing for more accurate estimates of crop water shortages and groundwater recharge associated with irrigation delivery and application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号