首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a key component of the National Flood Interoperability Experiment (NFIE), this article presents the continental scale river flow modeling of the Mississippi River Basin (MRB), using high‐resolution river data from NHDPlus. The Routing Application for Parallel computatIon of Discharge (RAPID) was applied to the MRB with more than 1.2 million river reaches for a 10‐year study (2005‐2014). Runoff data from the Variable Infiltration Capacity (VIC) model was used as input to RAPID. This article investigates the effect of topography on RAPID performance, the differences between the VIC‐RAPID streamflow simulations in the HUC‐2 regions of the MRB, and the impact of major dams on the streamflow simulations. The model performance improved when initial parameter values, especially the Muskingum K parameter, were estimated by taking topography into account. The statistical summary indicates the RAPID model performs better in the Ohio and Tennessee Regions and the Upper and Lower Mississippi River Regions in comparison to the western part of the MRB, due to the better performance of the VIC model. The model accuracy also increases when lakes and reservoirs are considered in the modeling framework. In general, results show the VIC‐RAPID streamflow simulation is satisfactory at the continental scale of the MRB.  相似文献   

2.
The National Flood Interoperability Experiment (NFIE) was an undertaking that initiated a transformation in national hydrologic forecasting by providing streamflow forecasts at high spatial resolution over the whole country. This type of large‐scale, high‐resolution hydrologic modeling requires flexible and scalable tools to handle the resulting computational loads. While high‐throughput computing (HTC) and cloud computing provide an ideal resource for large‐scale modeling because they are cost‐effective and highly scalable, nevertheless, using these tools requires specialized training that is not always common for hydrologists and engineers. In an effort to facilitate the use of HTC resources the National Science Foundation (NSF) funded project, CI‐WATER, has developed a set of Python tools that can automate the tasks of provisioning and configuring an HTC environment in the cloud, and creating and submitting jobs to that environment. These tools are packaged into two Python libraries: CondorPy and TethysCluster. Together these libraries provide a comprehensive toolkit for accessing HTC to support hydrologic modeling. Two use cases are described to demonstrate the use of the toolkit, including a web app that was used to support the NFIE national‐scale modeling.  相似文献   

3.
National Flood Interoperability Experiment (NFIE) derived technologies and workflows will offer the ability to rapidly forecast flood damages. Address Points used by emergency management personnel approximate the locations of buildings, and they are a common operating picture for emergency responders. Most United States (U.S.) county tax assessment offices throughout the contiguous U.S. (CONUS) produce georeferenced cadastral data. To varying degrees, these parcel data describe building characteristics of structures within the parcel. Address Point data with cadastral data offers the ability to rapidly develop building inventories for flood damage estimation. Flood damage forecasts can expedite recovery and improve short‐term flood resilience. In this work the authors evaluate Flood Damage Wizard, a proposed open source platform independent methodology. Flood Damage Wizard uses point shapefile building information to estimate flood damage to buildings by finding the appropriate depth‐damage function using fuzzy‐text matching. The authors apply Flood Damage Wizard using Address Point and parcel datasets to demonstrate a method of estimating flood damage to buildings nearly anywhere within the CONUS. Results indicate using Address Point and cadastral datasets can generate total flood damage estimates approximate to those estimated using existing software solutions Hazus‐MH and HEC‐FIA with minimal manual processing of input data.  相似文献   

4.
This study assesses a large‐scale hydrologic modeling framework (WRF‐Hydro‐RAPID) in terms of its high‐resolution simulation of evapotranspiration (ET) and streamflow over Texas (drainage area: 464,135 km2). The reference observations used include eight‐day ET data from MODIS and FLUXNET, and daily river discharge data from 271 U.S. Geological Survey gauges located across a climate gradient. A recursive digital filter is applied to decompose the river discharge into surface runoff and base flow for comparison with the model counterparts. While the routing component of the model is pre‐calibrated, the land component is uncalibrated. Results show the model performance for ET and runoff is aridity‐dependent. ET is better predicted in a wet year than in a dry year. Streamflow is better predicted in wet regions with the highest efficiency ~0.7. In comparison, streamflow is most poorly predicted in dry regions with a large positive bias. Modeled ET bias is more strongly correlated with the base flow bias than surface runoff bias. These results complement previous evaluations by incorporating more spatial details. They also help identify potential processes for future model improvements. Indeed, improving the dry region streamflow simulation would require synergistic enhancements of ET, soil moisture and groundwater parameterizations in the current model configuration. Our assessments are important preliminary steps towards accurate large‐scale hydrologic forecasts.  相似文献   

5.
The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June‐July 2015, a demonstration version of a near real‐time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high‐resolution flood forecasting with real‐time observations and flood inundation mapping and planning for local flood emergency response.  相似文献   

6.
National Oceanic and Atmospheric Administration's National Weather Service (NWS) flash flood warnings are issued by Weather Forecast Offices and are underpinned by information from the Flash Flood Guidance (FFG) system operated by the River Forecast Centers (RFCs). This study focuses on the quantitative evaluation and limitations of the FFG system using reported flash flood cases in 2010 and 2011. The flash flood reports were obtained from the NWS Storm Event database for the Arkansas‐Red Basin RFC (ABRFC). The current FFG system at the ABRFC provides gridded flash flood guidance (GFFG) system using the NWS Hydrology Laboratory‐Research Distributed Hydrologic Model to translate the upper zone soil moisture to estimates of Soil Conservation Service Curve Numbers. Comparisons of the GFFG and real‐time Multisensor Precipitation Estimator‐derived Quantitative Precipitation Estimate for the same duration and location were used to analyze the success of the system. Typically, the six‐hour duration was characterized by higher probability of detection values than the three‐hour duration, which highlights the difficulty of hydrologic process estimation for shorter time scales. The current system does not take into account physical characteristics such as land use, including irrigated agricultural farm and urban areas, hence, overly dry soil moisture estimates over these areas can lower the success rate of the GFFG product.  相似文献   

7.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

8.
River networks based on Digital Elevation Model (DEM) data differ depending on the DEM resolution, accuracy, and algorithms used for network extraction. As spatial scale increases, the differences diminish. This study explores methods that identify the scale where networks obtained by different methods agree within some margin of error. The problem is relevant for comparing hydrologic models built around the two networks. An example is the need to compare streamflow prediction from the Hillslope Link Model (HLM) operated by the Iowa Flood Center (IFC) and the National Water Model (NWM) operated by the National Water Center of the National Oceanic and Atmospheric Administration. The HLM uses landscape decomposition into hillslopes and channel links while the NWM uses the NHDPlus dataset as its basic spatial support. While the HLM resolves the scale of the NHDPlus, the outlets of the latter do not necessarily correspond to the nodes of the HLM model. The authors evaluated two methods to map the outlets of NHDPlus to outlets on the IFC network. The methods compare the upstream areas of the channels and their spatial location. Both methods displayed similar performance and identified matches for about 80% of the outlets with a tolerance of 10% in errors in the upstream area. As the aggregation scale increases, the number of matches also increases. At the scale of 100 km2, 90% of the outlets have matches with tolerance of 5%. The authors recommend this scale for comparing the HLM and NWM streamflow predictions.  相似文献   

9.
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

10.
Warning systems with the ability to predict floods several days in advance have the potential to benefit tens of millions of people. Accordingly, large‐scale streamflow prediction systems such as the Advanced Hydrologic Prediction Service or the Global Flood Awareness System are limited to coarse resolutions. This article presents a method for routing global runoff ensemble forecasts and global historical runoff generated by the European Centre for Medium‐Range Weather Forecasts model using the Routing Application for Parallel computatIon of Discharge to produce high spatial resolution 15‐day stream forecasts, approximate recurrence intervals, and warning points at locations where streamflow is predicted to exceed the recurrence interval thresholds. The processing method involves distributing the computations using computer clusters to facilitate processing of large watersheds with high‐density stream networks. In addition, the Streamflow Prediction Tool web application was developed for visualizing analyzed results at both the regional level and at the reach level of high‐density stream networks. The application formed part of the base hydrologic forecasting service available to the National Flood Interoperability Experiment and can potentially transform the nation's forecast ability by incorporating ensemble predictions at the nearly 2.7 million reaches of the National Hydrography Plus Version 2 Dataset into the national forecasting system.  相似文献   

11.
We present a Digital Elevation Model‐based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc‐second (10 m) height above nearest drainage (HAND) raster data for the conterminous United States (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc‐second CONUS HAND raster dataset was computed in 1.5 days on the cyberGIS Resourcing Open Geospatial Education and Research supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model forecast data to enable near real‐time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process were profiled to gain insights into the computational characteristics in high‐performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies.  相似文献   

12.
The National Water Model (NWM) was deployed by the National Oceanic and Atmospheric Administration to simulate operational forecasts of hydrologic states across the continental United States. This paper describes the geospatial river network (“hydro-fabric”), physics, and parameters of the NWM, elucidating the challenges of extrapolating parameters a large scale with limited observations. A set of regression-based channel geometry parameters are evaluated for a subset of the 2.7 million NWM reaches, and the riverine compound channel scheme is described. Based on the results from regional streamflow experiments within the broader NWM context, the compound channel reduced the root mean squared error by 2% and improved median Nash–Sutcliffe efficiency by 16% compared with a non-compound formulation. Peak event analysis from 910 peak flow events across 26 basins matched from the US Flash Flood Observation Database revealed that the mean timing error is 3 h lagged behind the observations. The routing time step was also tested, for 5-min (default, operational setting) and 1-h increments. The model was computationally stable and able to convey the flood peaks, although the hydrograph shape and peak timing were altered.  相似文献   

13.
14.
ABSTRACT: The National Weather Service River Forecast System (NWSRFS) is the new hydrologic prediction model for the National Weather Service (NWS) and provides guidance to meteorologists who issue NWS Flood Warnings to the public. The primary submodel within NWSRFS is the Sacramento Soil Moisture Accounting (SAC-SMA) model, which predicts surface runoff as a function of meteorological, geological, and soil data calibrated over a watershed. The research presented here focuses on a different approach to NWSRFS calibrations: greater utilization of geologic and soil data, in order to give the model better predictive capability. Geologic understanding can create better insights for the initial estimation and subsequent adjustment of SAC-SMA parameters. Fifteen calibrated Pacific Northwest drainages reveal a variety of hydrogeologic responses. For example, results for the Mount Rainier drainages show the complex interaction between active glaciers, impermeable volcanic surfaces, and glacial sedimentary valleys. Unweathered volcanic terrains show flashy peak flows, fast flow recessions, and low baseflow. Sedimentary terrains display subdued peak flows, slow flow recessions, and higher baseflow. Operational implementation of these calibrations at the NWS's Northwest River Forecast Center has yielded more accurate predictive results since 1995. NWS hydrologic forecasters nationwide could benefit from using drainage basin geologic characteristics in understanding and improving model calibrations and real time forecasts.  相似文献   

15.
Global and continental scale flood forecast provide coarse resolution flood forecast, but from the perspective of emergency management, flood warnings should be detailed and specific to local conditions. The desired refinement can be provided by the use of downscaling global scale models and through the use of distributed hydrologic models to produce a high‐resolution flood forecast. Three major challenges associated with transforming global flood forecasting to a local scale are addressed in this work. The first is using open‐source software tools to provide access to multiple data sources and lowering the barriers for users in management agencies at local level. This can be done through the Tethys Platform that enables web water resources modeling applications. The second is finding a practical solution for the computational requirements associated with running complex models and performing multiple simulations. This is done using Tethys Cluster that manages distributed and cloud computing resources as a companion to the Tethys Platform for web app development. The third challenge is discovering ways to downscale the forecasts from the global extent to the local context. Three modeling strategies have been tested to address this, including downscaling of coarse resolution global runoff models to high‐resolution stream networks and routing with Routing Application for Parallel computatIon of Discharge (RAPID), the use of hierarchical Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) distributed models, and pre‐computed distributed GSSHA models.  相似文献   

16.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

17.
The National Weather Service (NWS) forecasts floods at approximately 3,600 locations across the United States (U.S.). However, the river network, as defined by the 1:100,000 scale National Hydrography Dataset‐Plus (NHDPlus) dataset, consists of 2.7 million river segments. Through the National Flood Interoperability Experiment, a continental scale streamflow simulation and forecast system was implemented and continuously operated through the summer of 2015. This system leveraged the WRF‐Hydro framework, initialized on a 3‐km grid, the Routing Application for the Parallel Computation of Discharge river routing model, operating on the NHDPlus, and real‐time atmospheric forcing to continuously forecast streamflow. Although this system produced forecasts, this paper presents a study of the three‐month nowcast to demonstrate the capacity to seamlessly predict reach scale streamflow at the continental scale. In addition, this paper evaluates the impact of reservoirs, through a case study in Texas. Validation of the uncalibrated model using observed hourly streamflow at 5,701 U.S. Geological Survey gages shows 26% demonstrate PBias ≤ |25%|, 11% demonstrate Nash‐Sutcliffe Efficiency (NSE) ≥ 0.25, and 6% demonstrate both PBias ≤ |25%| and NSE ≥ 0.25. When evaluating the impact of reservoirs, the analysis shows when reservoirs are included, NSE ≥ 0.25 for 56% of the gages downstream while NSE ≥ 0.25 for 11% when they are not. The results presented here provide a benchmark for the evolving hydrology program within the NWS and supports their efforts to develop a reach scale flood forecasting system for the country.  相似文献   

18.
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water‐related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium‐resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate‐and‐transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user‐defined applications.  相似文献   

19.
The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and options to experiment with low‐impact development (LID) features for parcels up to 5 ha in size. We discuss how the NSWC treats the urban hydrologic cycle and focus on the estimation uncertainty in soil hydrology and its impact on runoff simulation by comparing field‐measured soil hydrologic data from 12 cities to corresponding NSWC estimates in three case studies. The default NSWC hydraulic conductivity is 10.1 mm/h, which underestimates conductivity measurements for New Orleans, Louisiana (95 ± 27 mm/h) and overestimates that for Omaha, Nebraska (3.0 ± 1.0 mm/h). Across all cities, the NSWC prediction, on average, underestimated hydraulic conductivity by 10.5 mm/h compared to corresponding measured values. In evaluating how LID interact with soil hydrology and runoff response, we found direct hydrologic interaction with pre‐existing soil shows high sensitivity in runoff prediction, whereas LID isolated from soils show less impact. Simulations with LID on higher permeability soils indicate that nearly all of pre‐LID runoff is treated; while features interacting with less‐permeable soils treat only 50%. We highlight the NSWC as a screening‐level tool for site runoff dynamics and its suitability in stormwater management.  相似文献   

20.
Hydrologic modeling can be used to provide warnings before, and to support operations during and after floods. Recent technological advances have increased our ability to create hydrologic models over large areas. In the United States (U.S.), a new National Water Model (NWM) that generates hydrologic variables at a national scale was released in August 2016. This model represents a substantial step forward in our ability to predict hydrologic events in a consistent fashion across the entire U.S. Nevertheless, for these hydrologic results to be effectively communicated, they need to be put in context and be presented in a way that is straightforward and facilitates management‐related decisions. The large amounts of data produced by the NWM present one of the major challenges to fulfill this goal. We created a cyberinfrastructure to store NWM results, “accessibility” web applications to retrieve NWM results, and a REST API to access NWM results programmatically. To demonstrate the utility of this cyberinfrastructure, we created additional web apps that illustrate how to use our REST API and communicate hydrologic forecasts with the aid of dynamic flood maps. This work offers a starting point for the development of a more comprehensive toolset to validate the NWM while also improving the ability to access and visualize NWM forecasts, and develop additional national‐scale‐derived products such as flood maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号