首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT: Advances in the science of weather modification have provided an opportunity for significant progress in the area of precipitation management. Coordination of efforts and intensification of both laboratory and field research could lead to major advances within the decade. In view of the important decision-making role played by society, however, it is necessary that our scientific efforts be coordinated with a public relations program designed to inform and educate the public on the role and potential of artificial precipitation augmentation. In addition, careful consideration must be given to those social and legal issues related to weather modification. Environmental impact, land use, economic potential and damage liability are aU factors of importance in any comprehensive analysis. Rational solutions to questions in each of these areas is dependent upon the establishment of a sound scientific basis for operational weather modification, which should be the first priority.  相似文献   

3.
Khalili, Malika, François Brissette, and Robert Leconte, 2011. Effectiveness of Multi‐site Weather Generator for Hydrological Modeling. Journal of the American Water Resources Association (JAWRA) 1‐12. DOI: 10.1111/j.1752‐1688.2010.00514.x Abstract: A multi‐site weather generator has been developed using the concept of spatial autocorrelation. The multi‐site generation approach reproduces the spatial autocorrelations observed between a set of weather stations as well as the correlations between each pair of stations. Its performance has been assessed in two previous studies using both precipitation and temperature data. The main objective of this paper is to assess the efficiency of this multi‐site weather generator compared to a uni‐site generator with respect to hydrological modeling. A hydrological model, known as Hydrotel, was applied over the Chute du Diable watershed, located in the Canadian province of Quebec. The distributed nature of Hydrotel accounts for the spatial variations throughout the watershed, and thus allows a more in‐depth assessment of the effect of spatially dependent meteorological input on runoff generation. Simulated streamflows using both the multi‐site and uni‐site generated weather data were statistically compared to flows modeled using observed data. Overall, the hydrological modeling using the multi‐site weather generator significantly outperformed that using the uni‐site generator. This latter combined to Hydrotel resulted in a significant underestimation of extreme streamflows in all seasons.  相似文献   

4.
    
Rainfall interception represents the amount of water trapped in natural cover that is not drained directly to the ground. Intercepted rainfall may evaporate after a rain event, making it one of the main drivers of water balance and hydrologic regionalization. This process can be affected by factors such as climate, altitude, vegetation type, and topography. Here is a simple method of calculating rainfall interception in temperate forests using in Santa Maria Yavesia, Oaxaca, and Mexico as an illustrative study area. We used two rain gauges to measure net precipitation (Np) under the canopy at each study site and one gauge outside the canopy to obtain gross precipitation (Gp). Throughfall (Th) was indirectly measured using hemispherical photographs. Rainfall interception was obtained through a combination Th and Gp and Np. The mean rainfall interception was 50.6% in the Abies forests, 23%–40% in the coniferous‐mixed forests, and 27.4% in the broad‐leaved forests. We classified rainfall events by intensity to determine the effect of canopy structure and precipitation and found that 75% of the events were weak events, 24% were moderate events, and 1% were strong events. In addition, we found that rainfall interception was lower when the intensity of precipitation was higher. Our method can be replicated in different ecosystems worldwide as a tool for assessing the influence of rainfall interception in terms of ecological services.  相似文献   

5.
    
Assessment of water resources requires reliable rainfall data, and rain gauge networks may not provide adequate spatial representation due to limited point measurements. The Tropical Rainfall Measuring Mission (TRMM) provides rainfall data at global scale, and has been used with good results. However, TRMM data are an indirect measurement of rainfall, and therefore must be validated for its proper use. In this work, a validation scheme was designed and implemented to compare the TRMM Version 7 (V7) monthly rainfall product at different time frames with data measured in two hydrologic subregions of the Santiago River Basin (SRB) in Mexico: Río Alto Santiago and Río Bajo Santiago (RBS). Additionally, three physio‐climatic regions provide an assessment of the interplay of topography, distance from coastal regions, and seasonal weather patterns on the correspondence between both datasets. The TRMM V7 rainfall product exhibited good agreement with the rain gauge data particularly for the RBS and for the whole SRB during wettest summer and autumn seasons. However, strong regional dependence was observed due to differences in climate and topography. Overall, in spite of some noted underestimations, the monthly TRMM V7 rainfall product was found to provide useful information that can be used to complement limited monitoring as is the case of RBS. An improved combined rainfall product could be generated and thus gaining the most benefits from both data sources.  相似文献   

6.
    
This study examines NEXRAD Stage III product (hourly, cell size 4 km by 4 km) for its ability in estimating precipitation in central New Mexico, a semiarid area. A comparison between Stage III and a network of gauge precipitation estimates during 1995 to 2001 indicates that Stage III (1) overestimates the hourly conditional mean (CM) precipitation by 33 percent in the monsoon season and 55 percent in the nonmonsoon season; (2) overestimates the hourly CM precipitation for concurrent radar‐gauge pairs (nonzero value) by 13 percent in the monsoon season and 6 percent in the nonmonsoon season; (3) overestimates the seasonal precipitation accumulation by 11 to 88 percent in monsoon season and underestimates by 18 to 89 percent in the nonmonsoon season; and (4) either overestimates annual precipitation accumulation up to 28.2 percent or underestimates it up to 11.9 percent. A truncation of 57 to 72 percent of the total rainfall hours is observed in the Stage III data in the nonmonsoon season, which may be the main cause for both the underestimation of the radar rainfall accumulation and the lower conditional probability of radar rainfall detection in the nonmonsoon season. The study results indicate that the truncation caused loss of small rainfall amounts (events) is not effectively corrected by the real‐time rain gauge calibration that can adjust the rainfall rates but cannot recover the truncated small rainfall events. However, the truncation error in the monsoon season may be suppressed due to the larger rainfall rate and/or combined effect of overestimates by bright band and hail contaminations, virga, advection, etc. In general, improvement in NEXRAD performance since the monsoon season in 1998 is observed, which is consistent with the systematic improvement in the NEXRAD network.  相似文献   

7.
    
The Snow Survey and Water Supply Forecasting (SSWSF) Program and the Soil Climate Analysis Network (SCAN) of the United States Department of Agriculture's Natural Resources Conservation Service (NRCS) generate key observational and predictive information for water managers. Examples include mountain climate and snow monitoring through manual snow surveys and the SNOw TELemetry (SNOTEL) and SNOtel LITE networks, in situ soil moisture data acquisition through the SCAN and SNOTEL networks, and water supply forecasting using river runoff prediction models. The SSWSF Program has advanced continuously over the decades and is a major source of valuable water management information across the western United States, and the SCAN network supports agricultural and other water users nationwide. Product users and their management goals are diverse, and use-cases range from guiding crop selection to seasonal flood risk assessment, drought monitoring and prediction, avalanche and fire prediction, hydropower optimization, tracking climate variability and change, environmental management, satisfying international treaty and domestic legal requirements, and more. Priorities going forward are to continue innovating to enhance the accuracy and completeness of the observational and model-generated data products these programs deliver, including expanded synergies with the remote sensing community and uptake of artificial intelligence while maintaining long-term operational reliability and consistency at scale.  相似文献   

8.
    
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.  相似文献   

9.
Nishat, Bushra and S.M. Mahbubur Rahman, 2009. Water Resources Modeling of the Ganges‐Brahmaputra‐Meghna River Basins Using Satellite Remote Sensing Data. Journal of the American Water Resources Association (JAWRA) 45(6):1313‐1327. Abstract: Large‐scale water resources modeling can provide useful insights on future water availability scenarios for downstream nations in anticipation of proposed upstream water resources projects in large international river basins (IRBs). However, model set up can be challenging due to the large amounts of data requirement on both static states (soils, vegetation, topography, drainage network, etc.) and dynamic variables (rainfall, streamflow, soil moisture, evapotranspiration, etc.) over the basin from multiple nations and data collection agencies. Under such circumstances, satellite remote sensing provides a more pragmatic and convenient alternative because of the vantage of space and easy availability from a single data platform. In this paper, we demonstrate a modeling effort to set up a water resources management model, MIKE BASIN, over the Ganges, Brahmaputra, and Meghna (GBM) river basins. The model is set up with the objective of providing Bangladesh, the lowermost riparian nation in the GBM basins, a framework for assessing proposed water diversion scenarios in the upstream transboundary regions of India and deriving quantitative impacts on water availability. Using an array of satellite remote sensing data on topography, vegetation, and rainfall from the transboundary regions, we demonstrate that it is possible to calibrate MIKE BASIN to a satisfactory level and predict streamflow in the Ganges and Brahmaputra rivers at the entry points of Bangladesh at relevant scales of water resources management. Simulated runoff for the Ganges and Brahmaputra rivers follow the trends in the rated discharge for the calibration period. However, monthly flow volume differs from the actual rated flow by (?) 8% to (+) 20% in the Ganges basin, by (?) 15 to (+) 12% in the Brahmaputra basin, and by (?) 15 to (+) 19% in the Meghna basin. Our large‐scale modeling initiative is generic enough for other downstream nations in IRBs to adopt for their own modeling needs.  相似文献   

10.
    
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

11.
    
ABSTRACT: Observed April 1 snowpack accumulations within and near the Gunnison River basin in southwestern Colorado are compared with simulations from the Rhea-orographic-precipitation model to determine if the model simulates reliable magnitudes and temporal and spatial variability in winter precipitation for the basin. Twenty simulations of the Rhea model were performed using‘optimal’parameter sets determined for 10-kilometer (km) grids (10-km by 10-km grid cells) through stochastic calibration. Comparisons of Rhea-model simulations of winter precipitation with April 1 snowpack accumulations at 32 snowcourse stations were performed for the years 1972–1990. For most stations and most years the Rhea model reliably simulates the temporal and spatial variability in April 1 snowpack accumulations. However, in general, the Rhea-model underestimates April 1 snowpack accumulations in the Gunnison River basin area, and the underestimation is greatest for locations that receive the largest amount of snow. A significant portion of the error in Rhea-model simulations is due to the calibration of the Rhea model using gauge-catch precipitation measurements which can be as much as 50 percent below actual snowfall accumulations. Additional error in the Rhea-model simulations is a result of the comparison of gridded precipitation values to observed values measured at points.  相似文献   

12.
    
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

13.
    
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

14.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

15.
Harshburger, Brian J., Karen S. Humes, Von P. Walden, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2010. Evaluation of Short-to-Medium Range Streamflow Forecasts Obtained Using an Enhanced Version of SRM. Journal of the American Water Resources Association (JAWRA) 46(3):603-617. DOI: 10.1111/j.1752-1688.2010.00437.x Abstract: As demand for water continues to escalate in the western United States, so does the need for accurate streamflow forecasts. Here, we describe a methodology for generating short-to-medium range (1 to 15 days) streamflow forecasts using an enhanced version of the Snowmelt Runoff Model (SRM), snow-covered area data derived from MODIS products, data from Snow Telemetry stations, and meteorological forecasts. The methodology was tested on three mid-elevation, snowmelt-dominated basins ranging in size from 1,600 to 3,500 km2. To optimize the model performance and aid in its operational implementation, two enhancements have been made to SRM: (1) the use of an antecedent temperature index method to track snowpack cold content, and (2) the use of both maximum and minimum critical temperatures to partition precipitation into rain, snow, or a mixture of rain and snow. The comparison of retrospective model simulations with observed streamflow shows that the enhancements significantly improve the model performance. Streamflow forecasts generated using the enhanced version of the model compare well with the observed streamflow for the earlier leadtimes; forecast performance diminishes with leadtime due to errors in the meteorological forecasts. The three basins modeled in this research are typical of many mid-elevation basins throughout the American West, thus there is potential for this methodology to be applied successfully to other mountainous basins.  相似文献   

16.
    
ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation‐runoff model. Results from this study show that, in the basins tested, a precipitation‐runoff model can simulate realistic runoff series for current conditions using statistically down‐scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.  相似文献   

17.
ABSTRACT: The risks associated with a traditional wasteload allocation (WLA) analysis were quantified with data from a recent study of the Upper Trinity River (Texas). Risk is define here as the probability of failing to meet an established in-stream water quality standard. The QUAL-TX dissolved oxygen (DO) water quality model was modified to a Monte Carlo framework. Flow augmentation coding was also modified to allow an exact match to be computed between the predicted and an established DO concentration standard, thereby providing an avenue for linking input parameter uncertainty to the assignment of a wasteload permit (allowable mass loading rate). Monte Carlo simulation techniques were employed to propagate input parameter uncertainties, typically encountered during WLA analysis, to the computed effluent five-day carbonaceous biochemical oxygen demand requirements for a single major wastewater treatment plant (WWTP). The risk of failing to meet an established in-stream DO criterion may be as high as 96 percent. The uncertainty associated with estimation of the future total Kjeldahl nitrogen concentration for a single tributary was found to have the greatest impact on the determination of allowable WWTP loadings.  相似文献   

18.
ABSTRACT: A first-order uncertainty technique is developed to quantify the relationship between field data collection and a modeling exercise involving both calibration and subsequent verification. A simple statistic (LTOTAL) is used to quantify the total likelihood (probability) of successfully calibrating and verifying the model. Results from the first-order technique are compared with those from a traditional Monte Carlo simulation approach using a simple Streeter-Phelps dissolved oxygen model. The largest single difference is caused by the filtering or removal of unrealistic outcomes within the Monte Carlo framework. The amount of bias inherent in the first-order approach is also a function of the magnitude of input variability and sampling location. The minimum bias of the first-order technique is approximately 20 percent for a case involving relatively large uncertainties. However the bias is well behaved (consistent) so as to allow for correct decision making regarding the relative efficacy of various sampling strategies. The utility of the first-order technique is demonstrated by linking data collection costs with modeling performance. For a simple and inexpensive project, a wise and informed selection resulted in an LTOTAL value of 86 percent, while an uninformed selection could result in an LTOTAL value of only 55 percent.  相似文献   

19.
    
ABSTRACT: This study presents a methodology to evaluate the vulnerability of water resources in the Tsengwen creek watershed, Taiwan. Tsengwen reservoir, located in the Tsengwen creek watershed, is a multipurpose reservoir with a primary function to supply water for the ChiaNan Irrigation District. A simulation procedure was developed to evaluate the impacts of climate change on the water resources system. The simulation procedure includes a streamflow model, a weather generation model, a sequent peak algorithm, and a risk assessment process. Three climate change scenarios were constructed based on the predictions of three General Circulation Models (CCCM, GFDL, and GISS). The impacts of climate change on streamflows were simulated, and, for each climate change scenario, the agricultural water demand was adjusted based on the change of potential evapotranspiration. Simulation results indicated that the climate change may increase the annual and seasonal streamflows in the Tsengwen creek watershed. The increase in streamflows during wet periods may result in serious flooding. In addition, despite the increase in streamflows, the risk of water deficit may still increase from between 4 and 7 percent to between 7 and 13 percent due to higher agricultural water demand. The simulation results suggest that the reservoir capacity may need to be expanded. In response to the climate change, four strategies are suggested: (1) strengthen flood mitigation measures, (2) enhance drought protection strategies, (3) develop new water resources technology, and (4) educate the public.  相似文献   

20.
    
We observe a paradigm shift toward collaborative, multi‐level (from local to global) water management and suggestions for scale‐related design principles in the literature. Decision‐support tools are needed that can help achieve scale design principles. Mediated modeling (MM) refers to model building with people, rather than for people. This tool belongs to a family of participatory, systems oriented tools. This article explores their suitability for addressing challenges and principles that arise at multiple‐scales. MM can promote the understanding of cross‐level and cross‐scale links, creating salient, credible, and legitimate knowledge and encouraging boundary functions. Prerequisites for successful MM processes include an openness and willingness to collaborative learning. As new “meso‐level” institutions emerge to address complex challenges in water management collaboratively, tools like MM may play an important role in structuring dialogues, developing adaptive management capacity and advance an ecosystem services approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号