首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract: Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf‐grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface‐water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land‐cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land‐cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over‐estimation of the pesticide use compared to estimates from sales data.  相似文献   

2.
Nutrient export from the agricultural Midwest threatens the Gulf of Mexico and new conservation practices are needed to reduce the loss of nutrient from subsurface tile drainage systems. Oxbows are natural waterbodies formed when a river cuts off a meander loop and water quality benefits of reconstructed oxbows are being increasingly recognized. In this study, we monitored four reconstructed oxbow sites (two tile-fed, two non-tile) over a 2-year period in north-central Iowa and assessed their capacity for NO3-N and dissolved reactive phosphorus (DRP) reductions. Water flow and quality monitoring of tiles, shallow groundwater, oxbow and receiving streams documented that the oxbows were dominated by tile drainage inputs. NO3-N concentrations were highest in the drainage tiles flowing into the tile-fed oxbows (mean 8–10 mg/L) and much lower in floodplain groundwater (<1–2 mg/L). Annual NO3-N loads into the tile-fed oxbows were substantially larger than input loads into the non-tiled oxbows. For the two tile-fed oxbows, the 2-year NO3-N retention efficiencies were very similar (0.76–0.77) and on a monthly basis, greater retention efficiencies were measured in summer and fall. DRP concentrations and loads into the tile-fed oxbows were too low to allow for meaningful estimates of retention. Reconstructing oxbows to receive tile drainage water should be considered a sustainable conservation practice for tile drainage treatment in agricultural areas.  相似文献   

3.
为评价西南地区高尔夫球场人工湖的营养状态,并探讨影响球场湖泊富营养化的原因,2010年1月至12月,以成都麓山高尔夫球场为例,对球场的4个球道人工湖(12号球道、13号球道、14号球道和16号球道)水体的水体理化性质进行监测。结果显示:人工湖的富营养化程度呈季节性变化,其在试验期内综合营养状态已达到轻度富营养的状态。水体营养盐主要来自于球场草坪的施肥,氮、磷等营养物质随降水输入人工湖,从而引起的湖泊富营养化,尤其体现在多雨的夏季。  相似文献   

4.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

5.
Wetland loss alters the hydrology of wetlandscapes in poorly understood ways. To quantify the effects of wetland loss on subsurface hydrology, a physically based hydrologic model that simulates the timing and pathways of subsurface hydrologic connections was coupled with wetland inventories over a 50‐year period during which substantial wetland loss occurred. The model revealed, based on vertical variations in saturated hydraulic conductivities, wetland loss of different degrees led to a contraction of catchment contributing areas to local surface waters but an expansion of contributing areas to the regional surface water body. This shift in groundwater contributing areas reflected (1) a decrease in baseflow contribution to the local surface water bodies, and (2) an increase in the transit time and length of subsurface hydrologic connections with an associated increase in the magnitude and age of baseflow discharging to the regional surface water body. The model also showed regions with thick permeable aquifers were particularly sensitive to the loss of wetlands. Our ability to predict these changes in hydrology of the watershed provides important support for designing science‐based policies to promote sustainable water resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号