共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher S. Jones Caroline A. Davis Chad W. Drake Keith E. Schilling Samuel H.P. Debionne Daniel W. Gilles Ibrahim Demir Larry J. Weber 《Journal of the American Water Resources Association》2018,54(2):471-486
Various techniques exist to estimate stream nitrate loads when measured concentration data are sparse. The inherent uncertainty associated with load estimation, however, makes tracking progress toward water quality goals more difficult. We used high‐frequency, in situ nitrate sensors strategically deployed across the agricultural state of Iowa to evaluate 2016 stream concentrations at 60 sites and loads at 35 sites. The generated data, collected at an average of 225 days per site, show daily average nitrate‐N yields ranging from 12 to 198 g/ha, with annual yields as high as 53 kg/ha from the intensely drained Des Moines Lobe. Thirteen of the sites that capture water from 82.5% of Iowa's area show statewide nitrate‐N loading in 2016 totaled 477 million kg, or 41% of the load delivered to the Mississippi–Atchafalaya River Basin (MARB). Considering the substantial private and public investment being made to reduce nitrate loading in many states within the MARB, networks of continuous, in situ measurement devices as described here can inform efforts to track year‐to‐year changes in nitrate load related to weather and conservation implementation. Nitrate and other data from the sensor network described in this study are made publicly available in real time through the Iowa Water Quality Information System. 相似文献
2.
Keith E. Schilling Calvin F. Walter 《Journal of the American Water Resources Association》2005,41(6):1333-1346
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. 相似文献
3.
Keith E. Schilling Donna S. Lutz 《Journal of the American Water Resources Association》2004,40(4):889-900
ABSTRACT: Excessive nitrate‐nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28‐year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations. 相似文献
4.
氮污染特别是地下水硝酸盐污染已成为一个相当普遍而重要的环境问题。地下水硝酸盐污染与人类健康和环境安全密切相关。为控制地下水硝酸盐污染,最根本的解决办法就是找到硝酸盐的来源,减少硝态氮向地下水的输送。由于不同来源的硝酸盐具有不同的氮、氧同位素组成,人们利用NO3-中δ15N和δ18O开展了硝酸盐污染源识别研究。本文综述了利用氮、氧同位素识别地下水硝酸盐污染源及定量硝酸盐污染源输入的研究进展及目前存在的问题,并提出几个值得重视的研究方向。 相似文献
5.
《环境质量管理》2018,27(4):79-86
The Seymour aquifer consists of unconfined outcrops of sand and gravel in a semiarid, agricultural region of north‐central Texas in the United States of America. Most water samples collected from the aquifer in 2015 had nitrate concentrations above the drinking water standard of 44.3 milligrams per liter (mg/L). Generally, areas with high nitrate concentration in 2010 remained high in 2015, although the median dropped by 3.9 mg/L. The largest decreases in nitrate concentration—up to 97 mg/L (60%)—were observed in wells with depths less than the median of 13.1 meters (m). However, other wells, including depths above and below the median, showed increases in nitrate concentration of up to 40 mg/L (42%). In 2015, chloride concentrations in six wells exceeded the secondary contaminant level of 250 mg/L, and one well had a chloride concentration of 1,810 mg/L. Past and ongoing agricultural practices, including cultivation of native grassland, application of fertilizer, and irrigation with nitrate‐contaminated groundwater, help sustain overall high nitrate concentrations within the aquifer. Local conditions governing nitrogen inputs and dilution result in significant improvement or worsening of the nitrate problem over relatively short timeframes. The pumping of groundwater from the aquifer may facilitate mixing with groundwater of increased salinity that has been affected by the dissolution of evaporites in underlying Permian bedrock. 相似文献
6.
Terry R. Morley Andrew S. Reeve Aram J.K. Calhoun 《Journal of the American Water Resources Association》2011,47(2):337-349
Morley, Terry R., Andrew S. Reeve, and Aram J.K. Calhoun, 2011. The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/j.1752‐1688.2011.00519.x Abstract: Headwater wetlands, including hillside seeps, may contribute to downstream systems disproportionately to their relatively small size. We quantified the hydrology and chemistry of headwater wetlands in a central Maine, USA, catchment from 2003 to 2005 to determine their role in maintaining headwater streamflow and in affecting stream chemistry. A few of these headwater wetlands, commonly referred to as “seeps,” were characterized by relatively high groundwater discharge. During summer base flow, seeps were the primary source of surface water to the stream, contributing between 40 and 80% of stream water. Comparisons of groundwater and surface water dominant ion chemistry revealed only slight differences at the bedrock interface; however, significant changes occurred at the shallow groundwater‐surface water interface where we found decreases in total and individual cation concentrations with decreasing depth. Seep outflows significantly increased total cation and calcium concentrations in streams. Outflows at two seeps produced relatively high nitrate concentrations (88 ± 15 and 93 ± 15 μg/l respectively), yet did not correspond to higher nitrate in stream water below seep outflows (2 ± 1 μg/l). We demonstrate that small wetlands (< 1,335 m2) can contribute to headwater stream processes by linking groundwater and surface‐water systems, increasing the duration and magnitude of stream discharge, and by affecting stream chemistry, particularly during periods of base flow. 相似文献
7.
Alan R. Hill 《Journal of the American Water Resources Association》2018,54(1):240-254
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings. 相似文献
8.
《Journal of Environmental Planning and Management》2012,55(9):1206-1227
This paper proposes, for different water scarcity conditions, a cost efficient input tax policy to supply clean drinking water that is subject to contamination by nitrogen fertiliser and to quantify the welfare change due to this public control. By introducing a transaction cost component, we found that for moderate and relatively high water scarcity conditions the results support public intervention. However, for low scarcity conditions, our results indicate that welfare change is low or even negative, discouraging public intervention. We discuss a policy that supports the legal principle of the Polluter Pays Principle (PPP), by compensating the victim for the residual pollution not abated by the cost efficient solution, without affecting the efficiency criterion. 相似文献
9.
ABSTRACT: The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data. 相似文献
10.
Felipe Quintero Witold F. Krajewski 《Journal of the American Water Resources Association》2018,54(1):28-39
River networks based on Digital Elevation Model (DEM) data differ depending on the DEM resolution, accuracy, and algorithms used for network extraction. As spatial scale increases, the differences diminish. This study explores methods that identify the scale where networks obtained by different methods agree within some margin of error. The problem is relevant for comparing hydrologic models built around the two networks. An example is the need to compare streamflow prediction from the Hillslope Link Model (HLM) operated by the Iowa Flood Center (IFC) and the National Water Model (NWM) operated by the National Water Center of the National Oceanic and Atmospheric Administration. The HLM uses landscape decomposition into hillslopes and channel links while the NWM uses the NHDPlus dataset as its basic spatial support. While the HLM resolves the scale of the NHDPlus, the outlets of the latter do not necessarily correspond to the nodes of the HLM model. The authors evaluated two methods to map the outlets of NHDPlus to outlets on the IFC network. The methods compare the upstream areas of the channels and their spatial location. Both methods displayed similar performance and identified matches for about 80% of the outlets with a tolerance of 10% in errors in the upstream area. As the aggregation scale increases, the number of matches also increases. At the scale of 100 km2, 90% of the outlets have matches with tolerance of 5%. The authors recommend this scale for comparing the HLM and NWM streamflow predictions. 相似文献
11.
Gary K. Speiran 《Journal of the American Water Resources Association》2010,46(2):246-260
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations. 相似文献
12.
Zaina Hussein Mseli;Gaduputi Sankaranna;William John Mwegoha; 《环境质量管理》2024,34(1):e22308
This paper presents a comprehensive framework for the sustainable management of groundwater resources in the Makutupora basin, Dodoma, Tanzania. The framework was developed through a systematic four-phase methodology. Phase I involved a literature and document review to generate foundational insights. Phase II comprised a review of existing conceptual frameworks to identify best practices. Phase III included primary data collection through interviews, focus groups, and stakeholder surveys to understand current challenges and capacities. Phase IV involved synthesizing the findings to develop the proposed management framework. The framework includes a nested, multi-scale structure with four hierarchical levels, overarching goals, primary management functions, specific operations, and subordinate tasks. It was informed by sustainability Principles and Intergrated Water Resources Mangagement concepts. The framework facilitates coordinated planning and implementation across relevant organizations through well-defined roles and regular monitoring/evaluation. Key functions address resource assessment, regulatory compliance, stakeholder participation, financing, and capacity development. Validation by subject matter experts strengthened the framework's grounding in evidence and enhanced its implementation, adaptability, and long-term sustainability. The final framework is envisioned as a dynamic decision support tool to address the complexities of groundwater utilization, protection, and conservation in an equitable, adaptive manner for current and future generations. 相似文献
13.
《Journal of Environmental Planning and Management》2012,55(7):871-889
Golf is a major and expanding sport, leisure and tourism activity with significant environmental impacts. The impacts of golf and other sports facilities are increasingly addressed through Voluntary Environmental Programmes (VEPs). Since the late-1980s, VEPs have gained popularity because they theoretically overcome the weaknesses of environmental legislation, improve environmental performance beyond minimum legal compliance and confer competitive advantage. Yet their effectiveness is contested and they are only partially accepted. There is very limited research on the growing participation of golf and other sports in VEPs. Our international review paper outlines the environmental impacts of golf, analyses the strategic ‘green’ pressures affecting the sport, reviews the theory and practice of VEPs, and draws conclusions on this under-researched field. 相似文献
14.
Estimating Watershed Level Nonagricultural Pesticide Use From Golf Courses Using Geospatial Methods1
Garey A. Fox Gail P. Thelin George J. Sabbagh John W. Fuchs Iain D. Kelly 《Journal of the American Water Resources Association》2008,44(6):1363-1372
Abstract: Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf‐grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface‐water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land‐cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land‐cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over‐estimation of the pesticide use compared to estimates from sales data. 相似文献
15.
Ryan Shepler Jordan F. Suter Dale T. Manning Chris Goemans 《Journal of the American Water Resources Association》2019,55(3):657-669
Conservation of groundwater resources is critical for maintaining the future productivity of irrigated land in the Ogallala Aquifer Region and beyond. This research explores motivations and behavior related to groundwater conservation among agricultural producers in the Colorado portion of the Republican River Basin, which is part of the Ogallala Aquifer. The empirical modeling uses data from a recently conducted survey to analyze how a common set of producer, farm, and resource characteristics influence groundwater values, concern for future groundwater availability, private conservation actions, and support for coordinated conservation efforts. We find two factors, producer age and land owner status, are consistently correlated with the key conservation‐related outcomes we evaluate. More generally, the results suggest considerable similarities in the characteristics that drive private conservation actions and support for coordinated conservation. This knowledge could be used to better target and incentivize future groundwater conservation efforts in the region. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series. 相似文献
16.
A Quantitative Method for Delineating Regions: An Example for the Western Corn Belt Plains Ecoregion of the USA 总被引:3,自引:0,他引:3
/ A method was developed to systematically delineate boundaries forecological classification of regions. The process entailed the use ofsmall-scale digital data to quantify spatial concordance among environmentalattribute data sets. The data sets were grouped into spatially related themesusing cluster analysis and multidimensional scaling. Selected data sets werethen used either individually or collectively to divide the study area intosubregions that exhibited different environmental attributes. The method wasapplied to a previously defined ecological unit, the western Corn Belt of thecentral United States. The results showed that the portion of the study areawith intensive corn and soybean production was identifiable using each of thethree input data sets selected for partitioning (soil associations; AVHRRremote-sensing imagery; and a combined data set of landform, forest, andsoils data). The classification of other portions of the study area washighly dependent on the type and scale of the input data. The systematicmethodology used here offers advantages over other methods for identifyingecological regions in that the results from the systematic approach can bereproduced, the boundaries between ecological units can be revised based onnew or more accurate data, important ecological processes are explicitlychosen to delineate boundaries, and transition zones between regions can bequantified.KEY WORDS: Ecoregions; Spatial analysis; Corn Belt; Iowa; GIS;Regionalization 相似文献
17.
Kevin G. Boggs Robert W. Van Kirk Gary S. Johnson Jerry P. Fairley P. Steve Porter 《Journal of the American Water Resources Association》2010,46(6):1116-1132
Boggs, Kevin G., Robert W. Van Kirk, Gary S. Johnson, Jerry P. Fairley, and P. Steve Porter, 2010. Analytical Solutions to the Linearized Boussinesq Equation for Assessing the Effects of Recharge on Aquifer Discharge. Journal of the American Water Resources Association (JAWRA) 46(6):1116–1132. DOI: 10.1111/j.1752-1688.2010.00479.x Abstract: There is a need to develop a general understanding of how variations in aquifer recharge are reflected in discharge. Analytical solutions to the linearized Boussinesq equation governing flow in an unconfined aquifer provide a unified mathematical framework to quantify relationships among lag time, attenuation and distance between aquifer recharge and discharge and the effect of an up-gradient no-flow boundary. We applied this framework to three types of recharge: (1) instantaneous, (2) periodic, and (3) constant rate for a finite duration. When the temporal scale of recharge exceeds the diffusive aquifer time scale, recharge will be reflected in discharge quickly and with little attenuation. When aquifer time scale is large, most recharge events are shorter in scale than that of the aquifer, resulting in large attenuation. Attenuation is more sensitive to boundary effects than lag time, and boundary effects increase as recharge time scale increases. Boundary effects can often be ignored when the recharge source is farther than 1/3 of the domain length away from the no-flow boundary. We illustrate analytical results with application to the economically critical Eastern Snake River Plain Aquifer in Idaho. In this aquifer, detectable annual and decadal cycles in discharge can result from recharge no farther than 20 and 60 km away from the discharge point, respectively. The effects of more distant, long-term recharge can be detected only after a time lag of several decades. 相似文献
18.
Rosemary W.H. Carroll Greg M. Pohll Charles G. Morton Justin L. Huntington 《Journal of the American Water Resources Association》2015,51(4):1114-1127
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness. 相似文献
19.
Alexander Zaporozec 《Journal of the American Water Resources Association》1972,8(6):1137-1143
In today's society the planned management of groundwater resources has played an increasingly greater role. One means of insuring the protection of groundwater quantity and quality is a regional zoning of groundwater resources. Regional zoning means to classify a given region with regard to hydrogeological characteristics and to evaluate and determine the possible use of each zone. The necessary assumption is the appropriate knowledge of geological structure (compiled in a geological map) and of hydrogeological conditions (compiled in a hydrogeological map). The basis for subdivision is a hydrogeological unit distinguished and delineated on the basis of lithological, stratigraphical, structural, and hydrogeological characteristics. It should have its own distinct hydrological system. The hydrogeological region is the basic unit. Regions may be grouped into larger units: hydrogeological provinces and realms. The subdivision of regions into hydrogeological zones, or subzones when applicable, forms the basis for a groundwater development plan. 相似文献
20.
David P. Ahlfeld 《Journal of the American Water Resources Association》1998,34(1):195-206
ABSTRACT: Optimization formulations for hydraulic control that take the form of linear programs possess a corresponding dual linear program. The economic and physical interpretations of the dual linear program are examined for formulations in which hydraulic head in groundwater systems is constiained. In each case it is shown that the dual linear program has a physically meaningful interpretation. For a hydraulic gradient control formulation used for remedial analysis it is shown that the dual variable can be interpreted as the remedial benefit due to each gradient control constraint. The dual linear program maximizes the remedial benefit. The value of the dual variable can be used to compute such useful properties as the total remedial benefit of pumping at a specific location. For a formulation that optimizes aquifer yield while constraining drawdown the dual variable can be used to measure the total cost of drawdown capacity consumption per unit of pumping at a specific location. The dual program minimizes the cost of drawdown capacity consumption. By examining the meaning of the dual linear program an alternate statement of the problem under study is revealed. Quantities arising from the dual program add to the value of the optimization approach. Significant new information can be derived from existing linear optimization formulations with minimal additional computational effort. 相似文献