首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   

2.
Flood inundation maps play a key role in assessment and mitigation of potential flood hazards. However, owing to high costs associated with the conventional flood mapping methods, many communities in the United States lack flood inundation maps. The objective of this study is to develop and examine an economical alternative approach to floodplain mapping using widely available soil survey geographic (SSURGO) database. In this study, floodplain maps are developed for the entire state of Indiana, and some counties in Minnesota, Wisconsin, and Washington states by identifying flood‐prone soil map units based on their attributes. For validation, the flood extents obtained from SSURGO database are compared with the extents from other floodplain maps such as the Federal Emergency Management Agency issued flood insurance rate maps (FIRMs), flood extents observed during past floods, and flood maps derived using digital elevation models. In general, SSURGO‐based floodplain maps (SFMs) are largely in agreement with other flood inundation maps. Specifically, the floodplain extents from SFMs cover 78‐95% area compared to FIRMs and observed flood extents. Thus, albeit with a slight loss in accuracy, the SSURGO approach offers an economical and fast alternative for floodplain mapping. In particular, it has potentially high utility in areas where no detailed flood studies have been conducted.  相似文献   

3.
Accurate and timely flood inundation maps serve as crucial information for hydrologists, first‐responders, and decision makers of natural disaster management agencies. In this study, two modeling approaches are applied to estimate the inundation area for a large flooding event that occurred in May 2016 in the Brazos River: (1) Height Above the Nearest Drainage combined with National Hydrograph Dataset Plus (NHDPlus‐HAND) and (2) International River Interface Cooperative — Flow and Sediment Transport with Morphological Evolution of Channels (iRIC‐FaSTMECH). The inundation extents simulated from these two modeling approaches are then compared against the observed inundation extents derived from a Landsat 8 satellite image. The simulated results from NHDPlus‐HAND and iRIC‐FaSTMECH show 56% and 70% of overlaps with the observed flood extents, respectively. A modified version of the NHDPlus‐HAND model, considering networked catchment behaviors, is also tested with an improved fitness of 67%. This study suggests that NHDPlus‐HAND has the potential for real‐time continental inundation forecast due to its low computational cost and ease to couple with the National Water Model. Better performance of NHDPlus‐HAND can be achieved by considering the inter‐catchment flows during extreme riverine flood events. Overall, this study presents a comprehensive examination made of remote sensing compared with HAND‐based inundation mapping in a region of complex topography.  相似文献   

4.
While deterministic forecasts provide a single realization of potential inundation, the inherent uncertainty associated with forecasts also needs to be conveyed for improved decision support. The objective of this study was to develop an ensemble framework for the quantification and visualization of uncertainty associated with flood inundation forecast maps. An 11‐member ensemble streamflow forecast at lead times from 0 to 48 hr was used to force two hydraulic models to produce a multimodel ensemble. The hydraulic models used are (1) the International River Interface Cooperative along with Flow and Sediment Transport with Morphological Evolution of Channels solver and (2) the two‐dimensional Hydrologic Engineering Center‐River Analysis System. Uncertainty was quantified and augmented onto flood inundation maps by calculating statistical spread among the ensemble members. For visualization, a series of probability flood maps conveying the uncertainty in forecasted water extent, water depth, and flow velocity was disseminated through a web‐based decision support tool. The results from this study offer a framework for quantifying and visualizing model uncertainty in forecasted flood inundation maps.  相似文献   

5.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

6.
Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM+ image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the landscape. The research design should be applicable for other large lowland coastal plain river valleys where agriculture is a major component of the floodplain landscape.  相似文献   

7.
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

8.
In the spring and summer of 2017, communities along the Lake Ontario shoreline suffered from the worst flood event on record. In late May, daily water levels reached their highest point in over 100 years, and flooding continued throughout much of the summer as lake levels slowly declined, with inundation and erosion significantly impacting shoreline homes and businesses. In this work, we present results from a rapid response online survey of property owners along the New York Lake Ontario shoreline to quantify the perceived flood impacts of the 2017 extended high water event. The survey focused on the degree and spatial distribution of inundation and erosion; the duration and drivers of inundation; the associated damages to different property features, with an emphasis on shoreline protection; and the degree of disruption to business and other activities and services. Photographic documentation of inundation extent and property damage also was provided by survey respondents. We demonstrate the potential utility of this dataset by characterizing key features of inundation and erosion impacts across the shoreline, and by using classification and regression trees to explore the predictability of inundation and erosion based on property characteristics. This work is part of a larger effort to develop models of inundation and erosion that can support flood impact assessments across the shoreline and help communities better prepare for future extended high water events.  相似文献   

9.
Geospatial information technology is changing the nature of fire mapping science and management. Geographic information systems (GIS) and global positioning system technology coupled with remotely sensed data provide powerful tools for mapping, assessing, and understanding the complex spatial phenomena of wildland fuels and fire hazard. The effectiveness of these technologies for fire management still depends on good baseline fuels data since techniques have yet to be developed to directly interrogate understory fuels with remotely sensed data. We couple field data collections with GIS, remote sensing, and hierarchical clustering to characterize and map the variability of wildland fuels within and across vegetation types. One hundred fifty six fuel plots were sampled in eight vegetation types ranging in elevation from 1150 to 2600 m surrounding a Madrean 'sky island' mountain range in the southwestern US. Fuel plots within individual vegetation types were divided into classes representing various stages of structural development with unique fuel load characteristics using a hierarchical clustering method. Two Landsat satellite images were then classified into vegetation/fuel classes using a hybrid unsupervised/supervised approach. A back-classification accuracy assessment, which uses the same pixels to test as used to train the classifier, produced an overall Kappa of 50% for the vegetation/fuels map. The map with fuel classes within vegetation type collapsed into single classes was verified with an independent dataset, yielding an overall Kappa of 80%.  相似文献   

10.
ABSTRACT: The accurate and reliable determination of floodplains, floodway boundaries, and flood water elevations are integral requirements of Flood Insurance Studies. These studies are intended to be used for determining the flood insurance rates. Therefore, the accuracy of the water surface profiles are important. To ensure the high degree of accuracy, the HUD Flood Insurance Administration has developed standards which must be met in the analysis of water surface profiles. A somewhat less accurate study is required for the preparation of Flood Emergency Plans. As part of the flood insurance studies of eight locations in the State of North Dakota, various flood hazard and floodplain information reports were reviewed. The hydrologic and hydraulic analyses, especially the computation of the 100-year water surface profiles, were completed using both simplified and complex hydraulic computation methods. Significant differences were found (1 to 3 feet) between the profiles computed by the SCS simplified method and those computed by HEC-2 computer program. However, the floodplain boundaries determined by both methods were found to be similar. Approximate methods are recommended for rapid determination of the floodplain, floodway boundaries, and inundation area mapping, while sophisticated computer programs (HEC-2) are recommended to be used for developing areas where the 100-year flood elevation has a significant impact on the cost of land development.  相似文献   

11.
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm‐ and tidal‐related flooding of spatially extensive coastal marshes within the north‐central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L‐Band SAR (PALSAR) (L‐band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C‐band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006‐2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR‐ and ASAR‐based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference‐scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR‐based inundation accuracies averaged 84% (= 160), while ASAR‐based mapping accuracies averaged 62% (= 245).  相似文献   

12.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   

13.
River channel geometry is an important input to hydraulic and hydrologic models. Traditional approaches to quantify river geometry have involved surveyed river cross sections, which cannot be extended to ungaged basins. In this paper, we describe a method for developing a synthetic rating curve to relate flow to water level in a stream reach based on reach‐averaged channel geometry properties developed using the Height above Nearest Drainage (HAND) method. HAND uses a digital elevation model (DEM) of the terrain and computes the elevation difference between each land surface cell and the stream bed cell to which it drains. Taking increments in water level in the stream, HAND defines the inundation zone and a water depth grid within this zone, and the channel characteristics are defined from this water depth grid. We apply our method to the Blanco River (Texas) and the Tar River (North Carolina) using 10‐m terrain data from the United States Geological Survey (USGS) 3D Elevation Program (3DEP) dataset. We evaluate the method's performance by comparing the reach‐average stage‐river geometry relationships and rating curves to those from calibrated Hydrologic Engineering Center's River Analysis System (HEC‐RAS) models and USGS gage observations. The results demonstrate that after some adjustment, the river geometry information and rating curves derived from HAND using national‐coverage datasets are comparable to those obtained from hydraulic models or gage measurements. We evaluate the inundation extent and show our approach is able to capture the majority of the Federal Emergency Management Agency (FEMA) 100‐year floodplain.  相似文献   

14.
Abstract: Regulation of river flows can result in decreased stage fluctuations and alteration of inundation patterns of floodplain wetlands. However, floodplain inundation has historically not been addressed in most minimum flow determinations. Florida law requires the water management districts of the state to establish minimum flows and levels to protect water bodies from significant harm associated with water withdrawals. The Southwest Florida Water Management District utilizes a 15% reduction in habitat criterion as a threshold for defining significant harm to freshwater segments of rivers. Utilizing a multi‐parameter approach and different habitat measures for seasonal flow periods, the District has recommended minimum flow compliance standards for the Alafia, Myakka and middle Peace rivers. For the high‐flow period, the District utilized a 15% reduction in the number of days of floodplain inundation (a temporal loss) as a significant harm threshold. This approach yielded allowable flow reductions of 8% for the Alafia and Peace rivers during the high‐flow season and a 7% allowable reduction of natural flows on the Myakka River. Comparison of changes in flows associated with temporal and spatial loss thresholds indicated that flow reductions required to effect a 15% spatial loss of habitat on the Alafia, Myakka and middle Peace rivers are higher than those that would yield a 15% temporal loss. This indicates that with respect to natural flow protection, the District’s consideration of temporal reductions in habitat for establishing minimum river flows for seasonal high‐flow periods is more conservative than the use of a spatial loss criterion.  相似文献   

15.
Real‐time flood inundation mapping is vital for emergency response to help protect life and property. Inundation mapping transforms rainfall forecasts into meaningful spatial information that can be utilized before, during, and after disasters. While inundation mapping has traditionally been conducted on a local scale, automated algorithms using topography data can be utilized to efficiently produce flood maps across the continental scale. The Height Above the Nearest Drainage method can be used in conjunction with synthetic rating curves (SRCs) to produce inundation maps, but the performance of these inundation maps needs to be assessed. Here we assess the accuracy of the SRCs and calculate statistics for comparing the SRCs to rating curves obtained from hydrodynamic models calibrated against observed stage heights. We find SRCs are accurate enough for large‐scale approximate inundation mapping while not as accurate when assessing individual reaches or cross sections. We investigate the effect of terrain and channel characteristics and observe reach length and slope predict divergence between the two types of rating curves, and SRCs perform poorly for short reaches with extreme slope values. We propose an approach to recalculate the slope in Manning’s equation as the weighted average over a minimum distance and assess accuracy for a range of moving window lengths.  相似文献   

16.
Abstract: A mathematical model on flow regime and water harvesting in inundation plains is presented. The flow profile is a free over‐fall at the end of the desired inundation. The flow front in the plain is on‐line for the entire coverage, in a sense that there is initiation of flow mass after each small reach of the flow traverse, and it is continuing to the extreme point of coverage. The water‐harvesting phenomenon depends upon the occurrences of the hydrologic events, the nature of surface flows in the valley, the expected favorable time of flood incidence, and the soil characteristics of the plains. The model has been tested for three micro‐watersheds of different soil characteristics. It is best suited to platykurtic nature of flood phenomenon in the study area, with the correlation co‐efficient in‐between computed and observed amount of water harvesting above 0.90.  相似文献   

17.
We present a Digital Elevation Model‐based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc‐second (10 m) height above nearest drainage (HAND) raster data for the conterminous United States (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc‐second CONUS HAND raster dataset was computed in 1.5 days on the cyberGIS Resourcing Open Geospatial Education and Research supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model forecast data to enable near real‐time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process were profiled to gain insights into the computational characteristics in high‐performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies.  相似文献   

18.
Many coastal regions in China are confronted with pressing problems of scarce land resources and heavy population. Over the past 30 years, considerable parts of coastal tidelands have been enclosed and reclaimed for agricultural land uses. To assess, plan, and implement large-scale reclamation programs, up-to-date and reliable information concerning the nature, areal extent, and physical and chemical characteristics of coastal saline lands is essential. This paper reports a remote sensing approach to detecting coastal saline land uses in Shangyu City, China, by using multi-temporal Landsat images. First, with the aid of resolution-sharpened Landsat-7 ETM+ images and their enhanced linear features, a visual interpretation is applied to extract individual dikes. Based on time series images and local government records, a spatial zoning procedure is then used to define six sub-zones with different historical years of reclamation. It shows that a total of 15,668 ha of coastal saline lands were enclosed and reclaimed from 1969 to 1996. Second, a modified land-use classification system for the study area is prescribed, and both unsupervised and supervised classifiers are performed for land-use classifications of grouped sub-zones. Information obtained from the spatial zoning, Tasseled Cap transformation and Normalized Difference Vegetation Index, is also utilized to facilitate the supervised classification process. Finally, a detailed land-use map is produced, with an overall classification accuracy of 77.8%. Results show that dominant agricultural land uses of sub-zones are changed with historical reclamation years, from saline lands with wildgrass (very recently reclaimed) to aqua-farm ponds, to cotton fields, and to paddy fields and orchards (very early reclaimed). This transform process is primarily affected by soil salinities, and according to a soil survey an electrical conductivity of saturation extract decreased from 7.3 ds/m in the saline land reclaimed in 1996 to below 2 ds/m in the land reclaimed before 1969. The study concludes that multi-temporal remotely sensed images are important and effective data sources for monitoring the rapid changes of coastal land uses.  相似文献   

19.
ABSTRACT: A flood control reservoir protects valuable developments on the downstream flood plain by storing flood waters and releasing them at a rate that will reduce the downstream damage. The water surface level of the flood pool behind the dam can fluctuate considerably during the occurrence of a large magnitude flood causing the inundation of trees, low vegetation, and water based recreation facilities located in those areas of the flood pool area that are normally well above the water level. The amount of damage that will occur in the upper levels of the flood storage area will depend on the depth and duration of the inundation that occurs. This, in turn, is directly related to the operating policy for the reservoir. A dynamic programming optimization model of flood control reservoir operation is presented. This model determines the reservoir operating schedule that minimizes downstream flood damages. Various constraints are added to the model to account for the environmental impacts of long periods of flood storage.  相似文献   

20.
To address the limited application of analytical and modelling techniques in prioritizing revegetation sites for dryland salinity (saline land) management, a case study of the Hodgson Creek catchment in Queensland, Australia, was conducted. An analytical framework was developed, incorporating the use of spatial datasets (Landsat 7 image, DEM, soil map, and salinity map), which were processed using digital image processing techniques and a geographic information system (GIS). Revegetation sites were mapped and their priority determined based on recharge area, land use/cover and sub‐catchment salinity. The analytical framework presented here enhances the systematic use of land information, widens the scope for scenario testing, and improves the testing of alternative revegetation options. The spatial patterns of revegetation sites could provide an additional set of information relevant in the design of revegetation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号