首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一种高效复合絮凝剂对多种废水的处理效果   总被引:1,自引:0,他引:1  
用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复配成复合絮凝剂(PAC+PAM)应用于污染河水、生活污水、工业废水和餐饮废水等6种废水的处理,结果表明。PAC、PAM、PAC+PAM对污染河水的CODc。SS、浊度有显著降低作用,PAC+PAM的净水效果明显优于PAC和PAM;PAC+PAM对6种废水中COD的去除率为81.5%~90.4%,平均84.6%。对SS的去除率为81.9%~96.5%,平均88.9%,对浊度的去除率为91.3%-98.0%,平均95.1%;处理后悬浮物基本被絮凝沉降,水体变得较清澈透明,异味或臭味消除。说明本PAC+PAM复合絮凝剂对各种废水均有良好的净水效果,具有重要的应用价值。  相似文献   

2.
ABSTRACT: Polyacrylamide (PAM) has been demonstrated to greatly reduce erosion in furrow irrigation, but much less is known about its effectiveness on the much steeper slopes typical of construction sites. The purpose of this study was to determine if anionic PAM would enhance erosion control either alone on bare soil or in combination with four types of ground covers commonly used for grass establishment: straw, straw erosion control blanket (ECB), wood fiber, and mechanically bonded fiber matrix (MBFM). Tests were conducted under natural rainfall and vegetation on a 4 percent slope (bare soil, straw, ECB, and MBFM) or using a rainfall simulator (bare soil, straw, wood fiber, MBFM) on either 10 percent or 20 percent slope on three different soil substrates. All ground cover treatments were evaluated with and without PAM applied in solution at 19 kg/ha. The straw, ECB, and MBFM significantly reduced runoff volume, average turbidity, and total sediment lost over five rainfall events on the vegetated plots. The addition of PAM to ground covers only occasionally had significant effects on runoff parameters but did significantly increase vegetative coverage overall. The rainfall simulator tests produced similar results after four events, with the straw, wood fiber, and MBFM all having significantly lower turbidity than the bare soil. The PAM significantly reduced turbidity for both the first and second events but did not consistently improve runoff quality after multiple rainfall events for any ground cover‐soil combinations tested. Separate tests of PAM applied before or after straw did not indicate a clear advantage of either approach, but runoff turbidity was often significantly reduced with PAM, especially at the 20 percent slope. Turbidity reductions were attributed to flocculation of eroded sediment.  相似文献   

3.
Williamson, Tanja N. and Charles G. Crawford, 2011. Estimation of Suspended‐Sediment Concentration From Total Suspended Solids and Turbidity Data for Kentucky, 1978‐1995. Journal of the American Water Resources Association (JAWRA) 47(4):739‐749. DOI: 10.1111/j.1752‐1688.2011.00538.x Abstract: Suspended sediment is a constituent of water quality that is monitored because of concerns about accelerated erosion, nonpoint contamination of water resources, and degradation of aquatic environments. In order to quantify the relationship among different sediment parameters for Kentucky streams, long‐term records were obtained from the National Water Information System of the U.S. Geological Survey. Suspended‐sediment concentration (SSC), the parameter traditionally measured and reported by the U.S. Geological Survey, was statistically compared to turbidity and total suspended solids (TSS), two parameters that are considered surrogate data. A linear regression of log‐transformed observations was used to estimate SSC from TSS; 72% of TSS observations were less than coincident SSC observations; however, the estimated SSC values were almost as likely to be overestimated as underestimated. The SSC‐turbidity relationship also used log‐transformed observations, but required a nonlinear, breakpoint regression that separated turbidity observations ≤6 nephelometric turbidity units. The slope for these low turbidity values was not significantly different than zero, indicating that low turbidity observations provide no real information about SSC; in the case of the Kentucky sediment record, this accounts for 30% of the turbidity observations.  相似文献   

4.
ABSTRACT: An effluent (ZPE), with high concentrations of ammonia was compared with solutions of ammonium chloride in both lethal and sublethal tests. The ZPE was more toxic than were solutions of ammonium chloride in acute toxicity tests, although ammonia was shown to be the major toxicant. The secondary toxicants present in the effluent were not identified. Growth was used as a sublethal test parameter and ZPE was again more toxic than ammonium chloride solutions at the same ammonia concentration. Concentrations of ammonia less than 3 mg/liter in ammonium chloride solutions actually stimulated the growth of juvenile chinook salmon. Concentrations of ZPE in the river at extreme low river flow could have sublethal effects on juvenile salmonids below the outfall.  相似文献   

5.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

6.
The Salton Sea is the largest inland water body in California, covering an area of 980 km(2). Inflow to the Salton Sea (1.6 km(3) yr(-1)) is predominately nutrient-rich agricultural wastewater, which has led to eutrophication. Because internal phosphorus release from the bottom sediments is comparatively low and external phosphorus loading to the Salton Sea is high, reduction of tributary phosphorus is expected to reduce algal blooms, increase dissolved oxygen, and reduce odors. Removing both dissolved phosphorus and phosphorus-laden sediment from agricultural drainage water (ADW) should decrease eutrophication. Both alum and polyacrylamide (PAM) are commonly used in wastewater treatment to remove phosphorus and sediment and were tested for use in tributary waters. Laboratory jar tests determined PAM effectiveness (2 mg L(-1)) for turbidity reduction as cationic > anionic = nonionic. Although cationic PAM was the most effective at reducing turbidity at higher speeds, there was no observed difference between the neutral and anionic PAMs at velocity gradients of 18 to 45 s(-1). Alum (4 mg L(-1) Al) reduced turbidity in low energy systems (velocity gradients < 10 s(-1)) by 95% and was necessary to reduce soluble phosphorus, which comprises 47 to 100% of the total P concentration in the tributaries. When PAM was added with alum, the anionic PAM became ineffective in aiding flocculation. The nonionic PAM (2 mg L(-1)) + alum (4 mg L(-1) Al) is recommended to reduce suspended solids in higher energy systems and reduce soluble P by 93%.  相似文献   

7.
ABSTRACT: The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50‐year simulation, Wells Creek, a third‐order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourth‐order warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/1. We estimated that 46 mg/1 would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/1 may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied.  相似文献   

8.
External loading of phosphorus (P) from agricultural surface discharge (tailwater) is the main cause of excessive algae growth and the eutrophication of the Salton Sea, California. Continuous polyacrylamide (PAM) applications to agricultural irrigation water inflows were evaluated as a means of reducing sediment and P in tailwater. Zero (control) and 1 mg L(-1) PAM (PAM1) treatments were compared at 17 Imperial Valley field sites. Five and 10 mg L(-1) PAM treatments (PAM5, PAM10) were conducted at one site. The particulate phosphorus (Pp) fraction was determined as the difference between total phosphorus (Pt) and the soluble phosphorus (Ps) fraction. We observed 73, 82, and 98% turbidity reduction with PAM1, PAM5, and PAM10 treatments. Although eight field sites had control tailwater sediment concentrations above the New River total maximum daily loads (TMDL), all but one were made compliant during their paired PAM1 treatments. While PAM1 and PAM10 reduced tail water Pp by 31 and 78%, none of the treatments tested reduced Ps. This may have been caused by high irrigation water Na concentrations which would reduce Ca adsorption and Ca-phosphate bridging on the PAM. The PAM1 treatments resulted in <0.5 mg L(-1) drain water polyacrylamide concentrations 1.6 km downstream of PAM addition, while PAM5 and PAM10 treatments produced > 2 mg L(-1) drain water polyacrylamide concentrations. We concluded that, although PAM practically eliminates Imperial Valley tailwater sediment loads, it does not effectively reduce tailwater Ps, the P fraction most responsible for the eutrophication of the Salton Sea.  相似文献   

9.
We developed a stochastic hourly stream temperature model (SHSTM) to estimate probability of exceeding given threshold temperature (T) for specified durations (24 and 96 h) to assess potential impacts on freshwater mussels in the upper Tar River, North Carolina. Simulated daily mean stream T from climate change (CC) and land‐use (LU) change simulations for 2021‐2030 and 2051‐2060 were used as input to the SHSTM. Stream T observations in 2010 revealed only two sites with T above 30°C for >24 h and Ts were never >31°C for more than 24 h at any site. The SHSTM suggests that the probability, P, that T will exceed 32°C for at least 96 h in a given year increased from P = 0, in the 20th Century, to P = 0.05 in 2021‐2030 and to P = 0.14 in 2051‐2060. The SHSTM indicated that CC had greater effects on P for 24 and 96 h durations than LU change. Increased P occurred primarily in higher order stream segments in the downstream reaches of the basin. The SHSTM indicated that hourly stream T responded to LU change on the daily scale and did not affect stream T for durations >24 h. The SHSTM indicated that known thermal thresholds for freshwater mussels could be exceeded within the next 50 years in many parts of the upper Tar River basin in North Carolina, which could have negative consequences on the recruitment of freshwater mussels.  相似文献   

10.
Total suspended solids (TSS) and total phosphorus (TP) have been shown to be strongly correlated with turbidity in watersheds. High‐frequency in situ turbidity can provide estimates of these potential pollutants over a wide range of hydrologic conditions. Concentrations and loads were estimated in four western Lake Superior trout streams from 2005 to 2010 using regression models relating continuous turbidity data to grab sample measures of TSS and TP during differing flow regimes. TSS loads estimated using the turbidity surrogate were compared with those made using FLUX software, a standard assessment technique based on discharge and grab sampling for TSS. More traditional rating curve methodology was not suitable because of the high variability in the particulates vs. discharge relationship. Stream‐specific turbidity and TSS data were strongly correlated (r2 = 0.5 to 0.8; p < 0.05) and less so for TP (r2 = 0.3 to 0.7; p < 0.05). Near‐continuous turbidity monitoring (every 15 min) provided a good method for estimating both TSS and TP concentration, providing information when manual sample collection was unlikely, and allowing for detailed analyses of short‐term responses of flashy Lake Superior tributaries to highly variable weather and hydrologic conditions while the FLUX model typically resulted in load estimates greater than those determined using the turbidity surrogate, with 17/23 stream years having greater FLUX estimates for TSS and 18/23 for TP.  相似文献   

11.
Texas water resources, already taxed by drought and population growth, could be further stressed by possible listings of endangered aquatic species. This study estimated potential economic impacts of environmental flows (EFs) for five freshwater unionid mussels in three Central Texas basins (Brazos, Colorado, and Guadalupe‐San Antonio Rivers) that encompass 36% of Texas (~246,000 km2). A water availability model projected reductions in water supply to power, commercial and industrial, municipal, and agriculture sectors in response to possible EFs for mussels. Single‐year economic impacts were calculated using publicly available data with and without water transfers. Benefits of EFs should also be assessed, should critical habitat be proposed. Potential economic losses were highest during droughts, but were nominal (<$1 M) in wetter years — even with high EFs. Reduced supplies to San Antonio area power plants caused worst‐case impacts of a single‐year shutdown up to $107 million (M) during drought with high EFs. For other sectors in the study area, water transfers reduced worst‐case losses from $80 to $11 M per year. Implementing innovative water management strategies such as water markets, conjunctive use of surface water and groundwater, aquifer storage and recovery could mitigate economic impacts if mussels — or other widely distributed aquatic species — were listed. However, approaches for defining EFs and strategies for mitigating economic impacts of EFs are needed.  相似文献   

12.
The Clinch River, in eastern United States, supports a diverse freshwater fauna including endangered mussels. Although mussel populations are stable in the Clinch's northeastern Tennessee segment, long‐term declines have been documented upstream in Virginia. We analyzed water and sediment quality data collected by government agencies from the 1960s through 2013 in an effort to inform current management. The river was divided into sections considering data availability and major tributaries. We tested for spatial differences among river sections and for temporal trends, and compared measured values to potentially protective levels if available. Ammonia concentrations approaching and exceeding protective levels were recorded, most often during the 1970s and 1980s in upstream sections. Sediment metals occurred at levels potentially causing biological effects, mainly during the 1980s and 1990s. In the 2000s, water‐column metals have been well below protective levels for general aquatic life. Dissolved solids (DS) increased in most river sections over the study period but mussel‐specific protective levels are not known. Analysis of water pH, total N, and total P did not generate conservation concern. Enhanced monitoring for sediment metals, water‐column metals, and ionic composition of DS; closer alignment of agency water monitoring practices in the two states; and research to determine biological effects of DS at current and anticipated levels can aid future conservation management.  相似文献   

13.
There is detailed literature on the mobilization of aluminum (Al) from soil to surface waters as a result of elevated acidic deposition to base‐poor forest watersheds. There is considerably less information on the mobilization and effects of Al from the application of alum that is used in some water supplies to control turbidity during high‐flow events. We report on the results of field measurements, laboratory sediment release experiments, and chemical equilibrium calculations conducted to evaluate the potential for the mobilization of Al from alum floc deposits in sediments of Kensico Reservoir, New York. Under ambient water quality conditions, mobilization of sediment Al is not a noteworthy concern at Kensico Reservoir. However, under experimental conditions of low pH, low acid neutralizing capacity (ANC), and low temperature, the inorganic fraction of monomeric Al can be mobilized from Kensico sediments to concentrations that would likely impair the health of aquatic organisms (>2 μmol/l). Elevated concentrations of monomeric Al were observed only when ANC decreased below 50 μeq/l, which is outside the range of values observed in Kensico during the 1997‐2007 interval (120‐460 μeq/l). Concentrations of complexing ligands are relatively low in Kensico waters (i.e., fluoride, naturally occurring organic solutes) and do not appear to substantially contribute to potential Al mobilization. For other water supplies with low ANC, the potential for sediment release of Al may exist.  相似文献   

14.
ABSTRACT: To comprehend the distributions of salinity, temperature, and suspended sediment in the Danshuei River estuary in Taiwan, monthly field surveys were conducted in 2003. These included several high and low slackwater surveys and intensive surveys. The results show that the Danshuei River estuary is predominately a partially mixed estuary. The highest concentration of suspended sediment is typically observed at the Chung‐Hsin Bridge, the most upstream sampling station. The suspended sediment concentration exhibits a general decreasing trend in the downstream direction. It may be concluded that the sediments mostly come from the upstream reach. A locally high concentration of suspended sediment is found at the Kuan‐Du station because of the local deep channel bathymetry and two‐layered estuarine circulation. A vertical two‐dimensional hydrodynamic and sediment transport model is applied to investigate the tidally averaged salinity distribution, residual circulation, and suspended sediment concentration. The modeling results reveal that, under the Q75 flow condition (i.e., low flow), a turbidity maximum occurs at the Kuan‐Du station due to the strong estuarine circulation. The model simulation with a much higher river flow condition results in a weaker residual circulation and weaker turbidity maximum.  相似文献   

15.
Abstract: Siltation and subsequent biological impairment is a national problem prompting state regulatory agencies to develop sediment total maximum daily loads (TMDL) for many streams. To support TMDL targets for reduced sediment yield in disturbed watersheds, a critical need exists for stream assessments to identify threshold concentrations of suspended sediment that impact aquatic biota. Because of the episodic nature of stream sediment transport, thresholds should not only be a function of sediment concentration, but also of duration and dose frequency. Water quality sondes can collect voluminous amounts of turbidity data, a surrogate for suspended sediment, at intervals that can be used to characterize concentration, duration, and frequency of elevated turbidity events. To characterize turbidity sonde data in an ecologically relevant manner, a methodology for concentration‐duration‐frequency (CDF) curves was developed using turbidity doses that relate to different levels of biological impairment. To illustrate this methodology, turbidity CDF curves were generated for two sites on Little Pigeon River in the Great Smoky Mountains National Park, Tennessee, using over 30,000 sonde data measurements per site for a one‐year period. Utilizing a Poisson arrival approach, turbidity spikes were analyzed stochastically by observing the frequency and duration of recorded events over a turbidity level that relates to a biological dose response. An exponential equation was used to fit duration and frequency of a specified turbidity level to generate concentric‐shaped CDF curves, where at specific turbidities longer durations occurred less frequently and conversely shorter durations occurred more frequently. The significance of the equation fit to the data was accomplished with a Kolmogorov‐Smirnov goodness‐of‐fit test. Our findings showed that the CDF curves derived by an exponential function performed reasonable well, with most curves significant at a 95% confidence level. These CDF curves were then used to demonstrate how they could be used to assess biological impairment, and identify future research needs for improved development of sediment TMDLs.  相似文献   

16.
Abstract: Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long‐term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate‐nitrite (NN) were estimated using a regression model with time‐series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow‐adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post‐implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus  antipodarum), which approached densities of 100,000 per m2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages.  相似文献   

17.
ABSTRACT: This study was conducted to determine the comparative acute toxicity of chlorine, bromine chloride and ozone in wastewater, and to determine any acute toxicity associated with chlorinated wastewater which had been dechlorinated with sulfur dioxide. Toxicity tests were conducted with several species of cyprinids, salmonids and centrarchids, and the freshwater macroinvertebrate, Daphnia magna. Chlorinated effluent exhibited the greatest potential for residual toxicity of any disinfected stream tested. The reduced residual toxicity of chlorobrominated or ozonated effluent was largely the result of the more rapid dissipation of these disinfectants in wastewater. The acute residual toxicity of chlorinated effluent was eliminated by dechlorination with sulfur dioxide.  相似文献   

18.
Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.  相似文献   

19.
Glyphosate use in the United States increased from less than 5,000 to more than 80,000 metric tons/yr between 1987 and 2007. Glyphosate is popular due to its ease of use on soybean, cotton, and corn crops that are genetically modified to tolerate it, utility in no‐till farming practices, utility in urban areas, and the perception that it has low toxicity and little mobility in the environment. This compilation is the largest and most comprehensive assessment of the environmental occurrence of glyphosate and aminomethylphosphonic acid (AMPA) in the United States conducted to date, summarizing the results of 3,732 water and sediment and 1,018 quality assurance samples collected between 2001 and 2010 from 38 states. Results indicate that glyphosate and AMPA are usually detected together, mobile, and occur widely in the environment. Glyphosate was detected without AMPA in only 2.3% of samples, whereas AMPA was detected without glyphosate in 17.9% of samples. Glyphosate and AMPA were detected frequently in soils and sediment, ditches and drains, precipitation, rivers, and streams; and less frequently in lakes, ponds, and wetlands; soil water; and groundwater. Concentrations of glyphosate were below the levels of concern for humans or wildlife; however, pesticides are often detected in mixtures. Ecosystem effects of chronic low‐level exposures to pesticide mixtures are uncertain. The environmental health risk of low‐level detections of glyphosate, AMPA, and associated adjuvants and mixtures remain to be determined.  相似文献   

20.
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water‐quality data showed higher turbidity and specific conductance in the reaches with low‐quality mussel assemblages compared to reaches with high‐quality mussel assemblages. Discrete water‐quality samples showed higher major ions and metals concentrations in the low‐quality reach. Base‐flow samples contained high major ion and metal concentrations coincident to low‐quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high‐quality mussel populations occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号