共查询到20条相似文献,搜索用时 15 毫秒
1.
A monitoring and evaluation program was undertaken, involving six different styles of evaluation to determine whether a low-cost, eight month education campaign that operated within a small commercial district was successful at changing people's behavior and reducing stormwater litter loads. This project also tested newly developed guidelines for monitoring and evaluating all types of non-structural stormwater quality best management practices (BMPs). The project evaluated: the extent and quality of the campaign's implementation; the degree to which it changed the awareness, attitudes, self-reported behavior and actual behavior of merchants and the public; and the nature of changes in stormwater litter loads. Overall, the education campaign produced mixed results, with the net result being modestly positive. Specifically, it was: unsuccessful at significantly influencing the knowledge or attitudes of merchants or the public; modestly successful at influencing the behavior of merchants and the public; and modestly successful at reducing litter loads in stormwater. At a theoretical level, the project highlights how using different 'styles' of BMP evaluation can help to build a more complete picture of a BMP's performance. At a practical level, the project helped to improve the monitoring and evaluation guidelines and produced evidence-based design guidelines for future campaigns that aim to reduce littering in commercial areas. 相似文献
2.
Helen Y. Chen Clayton C. Hodges Randel L. Dymond 《Journal of the American Water Resources Association》2021,57(1):109-133
Stream ecosystems are increasingly at risk for thermal impairment as urbanization intensifies, resulting in more heated runoff from impervious cover that is less likely to be cooled naturally. While several best management practices, including bioretention filters, have been able to reduce thermal pollution, success has been limited. The extent of thermal mitigation required to prevent ecological damage remains unknown. A calibrated runoff temperature model of a case study watershed in Blacksburg, VA was developed to determine the cumulative treatment volume of bioretention filters required to reduce thermal impacts caused by runoff from development in the watershed to regulated biologically acceptable levels. A future build out scenario of the study watershed was also analyzed. Results from this study established that runoff thermal pollution cannot be fully reduced to goal thresholds during all storms using bioretention filter retrofits. While retrofitting significantly decreased temperatures and heat exports relative to the controls, increasing treatment volumes did not really enhance mitigation. Alternate thermal mitigation methods that actively remove runoff volume should be considered where more thermal mitigation is required. 相似文献
3.
William N. Ferris;Kurt Stephenson; 《Journal of the American Water Resources Association》2024,60(2):392-405
Water quality credit trading has been advanced as a cost-effective means of achieving regulatory compliance. However, the volume of trading activity in operational programs is typically less than estimated by empirical analysis. The compliance behavior of Virginia Municipal Separate Storm Sewer Systems (MS4s) is studied in response to the Chesapeake Bay total maximum daily load (TMDL) to understand the circumstances in which trading is adopted, the extent to which trading is adopted, and the factors contributing to trading's use or nonuse. Results indicate that MS4s generally prefer to install their own pollutant control measures rather than trade. Many MS4s, however, rely on trade as a backup compliance option. MS4s favor bay compliance options that help meet other local management objectives (erosion control, infrastructure protection, and reductions toward local water quality objectives) and provide long term pollutant control benefits. Low cost term credits do not provide such benefits. For perpetual credits, MS4s use a variety of strategies to substantially reduce the cost differences between trade and nontrade compliance options. 相似文献
4.
Brent J. Dalzell Prasanna H. Gowda David J. Mulla 《Journal of the American Water Resources Association》2004,40(2):533-543
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions. 相似文献
5.
Margaret M. Kalcic Jane Frankenberger Indrajeet Chaubey Linda Prokopy Laura Bowling 《Journal of the American Water Resources Association》2015,51(4):973-991
Targeting of agricultural conservation practices to cost‐effective locations has long been of interest to watershed managers, yet its implementation cannot succeed without meaningful engagement of agricultural producers who are decision makers on the lands they farm. In this study, we engaged 14 west‐central Indiana producers and landowners in an adaptive targeting experiment. Interviews carried out prior to targeting provided rich spatial information on existing conservation practices as well as producers' preferences for future conservation projects. We targeted six of the most accepted conservation practices using the Soil and Water Assessment Tool and spatial optimization using a genetic algorithm approach. Fairly optimal conservation scenarios were possible with even the most limiting constraints of farmer‐accepted practices. We presented in follow‐up interviews a total of 176 conservation practice recommendations on 103 farm fields to 10 farmers whose lands were targeted for conservation. Primary findings indicated producers were interested in the project, were open to hearing recommendations about their lands, and expressed a high likelihood of adopting 35% of targeted recommendations. Farmers generally viewed the interview process and presentation of results quite favorably, and the interviews were found to build trust and make the targeting process more acceptable to them. 相似文献
6.
Timothy L. Carter Todd C. Rasmussen 《Journal of the American Water Resources Association》2006,42(5):1261-1274
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs. 相似文献
7.
Shawn E. Rosenquist W. Cully Hession Matthew J. Eick David H. Vaughan 《Journal of the American Water Resources Association》2011,47(4):800-812
Rosenquist, Shawn E., W. Cully Hession, Matthew J. Eick, and David H. Vaughan, 2011. Field Application of a Renewable Constructed Wetland Substrate for Phosphorus Removal. Journal of the American Water Resources Association (JAWRA) 47(4):800‐812. DOI: 10.1111/j.1752‐1688.2011.00557.x Abstract: Phosphorus (P) is typically the best target to prevent eutrophication in freshwater, a biological process associated with water quality degradation. Constructed wetlands (CW) and other practices that include P removal by sorption processes in substrates can provide economical treatment of stormwater, but have limitations (e.g., large land requirements, loss of removal over time, lack of P recovery). Over the last three years, a multi‐study research program addressed these limitations with a new P management concept. This concept minimizes CW size with a rejuvenation cycle (or rejuvenation) that renews P‐sorption capacity in the CW substrates and enables P recovery for productive use. This study, conducted in Blacksburg, Virginia (July‐September 2009), tested the efficacy of rejuvenation in the field. Methods included replicate cells of two sand substrates monitored for P removal during prerejuvenation and postrejuvenation filtration runs. One substrate contained cast iron filings as a repository for sorption capacity. Results support the following conclusions: (1) P removal is likely dependent on multiple factors including influent P concentration, previous substrate/solution equilibrium, pH, and time; (2) rejuvenation is capable of releasing P adsorbed during stormwater filtration; (3) inclusion of cast iron in substrate promotes additional P removal and enables further removal after rejuvenation; but (4) inclusion of cast iron may limit release of P during rejuvenation. 相似文献
8.
Brenda DeZiel Lori Krider Brad Hansen Joseph Magner Bruce Wilson Geoff Kramer John Nieber 《Journal of the American Water Resources Association》2019,55(1):154-188
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow. 相似文献
9.
Jeffrey Jack Randall H. Kelley David Stiles 《Journal of the American Water Resources Association》2006,42(3):747-753
ABSTRACT: The processing of waste from confined animal feeding operations (CAFOs) presents a major environmental challenge. Treatment of waste and subsequent land application is a common best management practice (BMP) for these operations in Kentucky, USA, but there are few data assessing the effect of runoff from such operations on aquatic communities. The authors sampled a stream bordering a CAFO with a land application program to determine if runoff from the fertilized fields was adversely affecting stream communities. Water chemistry, periphyton, and macroinvertebrate samples from riffle habitats downstream of the CAFO were compared to samples collected from an upstream site and a control stream in 1999 and 2000. Riffle communities downstream of the fertilized fields had higher chlorophyll a levels than other sites, but there were no significant differences in macroinvertebrate numbers or in biometrics such as taxa richness among the sites. The BMP in place at this site may be effective in reducing this CAFO's impact on the stream; however, similar assessments at other CAFO sites should be done to assess their impacts. Functional measures such as nutrient retention and litter decomposition of streams impacted by CAFOs should also be investigated to ensure that these operations are not adversely affecting stream communities. 相似文献
10.
Carmen T. Agouridis Stephen R. Workman Richard C. Warner Gregory D. Jennings 《Journal of the American Water Resources Association》2005,41(3):591-606
ABSTRACT: Controlling agricultural nonpoint source pollution from livestock grazing is a necessary step to improving the water quality of the nation's streams. The goal of enhanced stream water quality will most likely result from the implementation of an integrated system of best management practices (BMPs) linked with stream hydraulic and geomorphic characteristics. However, a grazing BMP system is often developed with the concept that BMPs will function independently from interactions among controls, climatic regions, and the multifaceted functions exhibited by streams. This paper examines the peer reviewed literature pertaining to grazing BMPs commonly implemented in the southern humid region of the United States to ascertain effects of BMPs on stream water quality. Results indicate that the most extensive BMP research efforts occurred in the western and midwestern U.S. While numerous studies documented the negative impacts of grazing on stream health, few actually examined the success of BMPs for mitigating these effects. Even fewer studies provided the necessary information to enable the reader to determine the efficacy of a comprehensive systems approach integrating multiple BMPs with pre‐BMP and post‐BMP geomorphic conditions. Perhaps grazing BMP research should begin incorporating geomorphic information about the streams with the goal of achieving sustainable stream water quality. 相似文献
11.
Eileen McLellan Dale Robertson Keith Schilling Mark Tomer Jill Kostel Doug Smith Kevin King 《Journal of the American Water Resources Association》2015,51(1):263-289
SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen‐load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi‐Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen‐load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen‐management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen‐management practices with innovative nitrogen‐removal practices such as tile‐drainage treatment wetlands, drainage–ditch enhancements, stream‐channel restoration, and floodplain reconnection. Combining nitrogen‐management practices with nitrogen‐removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen‐removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen‐management practices at the field scale and diverse nitrogen‐removal practices at the landscape scale. 相似文献
12.
Mark E. Eiswerth G. Cornelis van Kooten 《Journal of the American Water Resources Association》2019,55(5):1335-1348
Given the expansion of payments for water‐based ecosystem services (PWES) worldwide, two relevant issues are as follows: (1) determination of efficient allocations of payments among land managers, and (2) how this might change when paying one manager to implement a best management practice (BMP) to enhance an ecosystem service impacts the cost‐effectiveness of BMPs considered by other land managers not currently involved in PWES. Such externalities may be negative if diminishing returns dominate, or positive if mechanisms such as “social diffusion” dominate. We analyze how a planner should optimally allocate payments, depending on whether the expected externalities are negligible, negative, or positive. We employ (1) an optimal control model to gain insights on the problem’s dynamics, and (2) stochastic dynamic programming to determine optimal funding strategies using a specific application. The study contributes to the literature by identifying dynamically optimal PWES payment patterns, and illustrates how they should change when one accounts for externalities induced by the program. Because such impacts have not been addressed previously in a rigorous way, this treatment provides useful value added for PWES design and implementation. 相似文献
13.
Beatriz Mogollón Emmanuel A. Frimpong Andrew B. Hoegh Paul L. Angermeier 《Journal of the American Water Resources Association》2016,52(3):561-577
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions. 相似文献
14.
Christopher A. Ellison Quentin D. Skinner Katta J. Ready 《Journal of the American Water Resources Association》2006,42(1):55-68
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage. 相似文献
15.
Emily Kindervater Alan D. Steinman 《Journal of the American Water Resources Association》2019,55(5):1183-1195
Phosphorus (P) and sediment inputs from agricultural drainage contribute to the development of hypereutrophic conditions in lakes across the world. Two‐stage (2‐S) ditches, an agricultural best management practice gaining acceptance in the Midwestern United States, increase floodplain area within drainage ditches to help capture nutrients and sediment. While denitrification has been shown to increase on 2‐S benches, less is known about their P retention ability. This study assessed the abiotic and biotic P retention of two separate 2‐S ditches compared to their corresponding traditional reaches directly upstream within the Macatawa watershed, located in West Michigan. Soluble reactive P export was significantly reduced in 2‐S baseflow of both ditch systems. Equilibrium P concentration values suggest retention of P within the 2‐S sediment. P was bound within stable fractions in both 2‐S and traditional reaches. An analysis of P stock within the ditches revealed sediment held over 96% of total P (TP) within each reach compared to <4% in bench vegetation and periphyton combined. Turbidity, but not TP, was reduced in one study ditch, whereas TP, but not turbidity, was reduced in the other study ditch. Geomorphic stability may have been responsible for differing P retention between ditches. Ability to retain P appears to be impacted by physical as well as biogeochemical characteristics; hence, structure and age of 2‐S reaches influence P retention. 相似文献
16.
Alan R. Collins Neil Gillies 《Journal of the American Water Resources Association》2014,50(4):898-908
A constructed wetland (CW) was strategically placed to treat nitrates in groundwater as part of a watershed‐based farmer engagement process. Using stream water quality data collected before and after installation, this CW was found to reduce stream concentrations of nitrogen from nitrate (NO3‐N) during the growing season by about 0.14 mg/l at mean streamflow, a 17% reduction. Based upon realistic ecological and economic assumptions, about 80 kg of NO3‐N were removed annually by the CW at a cost of around US$30/kg. This per unit cost is at the low range of small wastewater treatment plant costs for nitrates, but higher than the costs of reduced fertilizer application. 相似文献
17.
Samuel A. Miller Steve W. Lyon Richard H. Moore 《Journal of the American Water Resources Association》2023,59(1):161-177
In the early 2000s, a phosphorus nutrient trading plan (NTP) requiring best management practices (BMPs) to be installed as pollution abatement strategies to offset phosphorus waste from the Alpine Cheese Company was implemented in four subwatersheds of Sugar Creek in northeast Ohio. To assess the impacts of the Alpine NTP, 49 sites were sampled approximately biweekly from 2010 to 2018 for phosphate, total phosphorus, nitrate, ammonia, and total nitrogen. In addition, the Ohio Environmental Protection Agency conducted stream health surveys at 21 sites before and after the BMPs were implemented. This study evaluated the potential impact of 68 BMPs implemented under the NTP on the observed changes in nutrient concentrations and stream health indicators. Most nutrient concentrations observed during high discharge conditions showed significant declines from 2010 to 2018 for all subwatersheds, which was most likely due to BMPs that reduced erosion and surface runoff. However, there were fewer significant declines and some significant increases in nutrient levels during low discharge conditions, suggesting a possible contribution from legacy nutrient sources. Most sites reported increases in stream health indicators, but many streams are still below recommended levels. Collectively, the installation of BMPs and decreases in nutrient concentrations observed during high discharge conditions can be attributed to the NTP and likely contributed to improved stream health. 相似文献
18.
Melissa A. Kenney Peter R. Wilcock Benjamin F. Hobbs Nicholas E. Flores Daniela C. Martínez 《Journal of the American Water Resources Association》2012,48(3):603-615
Kenney, Melissa A., Peter R. Wilcock, Benjamin F. Hobbs, Nicholas E. Flores, and Daniela C. Martínez, 2012. Is Urban Stream Restoration Worth It? Journal of the American Water Resources Association (JAWRA) 48(3): 603-615. DOI: 10.1111/j.1752-1688.2011.00635.x Abstract: Public investment in urban stream restoration is growing, yet little has been done to quantify whether its benefits outweigh its cost. The most common drivers of urban stream projects are water quality improvement and infrastructure protection, although recreational and aesthetic benefits are often important community goals. We use standard economic methods to show that these contributions of restoration can be quantified and compared to costs. The approach is demonstrated with a case study in Baltimore, Maryland, a city with a legal mandate to reduce its pollutant load. Typical urban stream restoration costs of US$500-1,200 per foot are larger than the cost of the least expensive alternatives for management of nitrogen loads from stormwater (here, detention ponds, equivalent to $30-120 per foot of restored stream) and for protecting infrastructure (rip-rap armoring of streambanks, at $0-120 per foot). However, the higher costs of stream restoration can in some cases be justified by its aesthetic and recreational benefits, valued using a contingent valuation survey at $560-1,100 per foot. We do not intend to provide a definitive answer regarding the worth of stream restoration, but demonstrate that questions of worth can be asked and answered. Broader application of economic analysis would provide a defensible basis for understanding restoration benefits and for making restoration decisions. 相似文献
19.
A systematic approach for the comparative assessment of stormwater pollutant removal potentials 总被引:1,自引:0,他引:1
This paper describes the development of a methodology to theoretically assess the stormwater pollutant removal performances of structural best management practices (BMPs). The method combines the categorisation of the relative importance of the primary removal processes within 15 different BMPs with an evaluation of the ability of each process to remove a pollutant in order to generate a value representing the pollutant removal potential for each BMP. The methodology is demonstrated by applying it separately to a set of general water quality indicators (total suspended solids, biochemical and chemical oxygen demand, nitrates, phosphates and faecal coliforms) to produce a ranked list of BMP pollutant removal efficiencies. Given the limited amount of available monitoring data relating to the differential pollutant removal capabilities of BMPs, the resulting prioritization will support stakeholders in making urban drainage decisions from the perspective of pollutant removal. It can also provide inputs to existing urban hydrology models, which aim to predict the treatment performances of BMPs. The level of resilience of the proposed approach is tested using a sensitivity analysis and the limitations in terms of BMP design and application are discussed. 相似文献
20.
E. Osei B. Du A. Bekele L. Hauck A. Saleh A. Tanter 《Journal of the American Water Resources Association》2008,44(3):562-576
Abstract: An integrated economic and environmental modeling system was developed for evaluating agro‐environmental policies and practices implemented on large scales. The modeling system, the Comprehensive Economic and Environmental Optimization Tool‐Macro Modeling System (CEEOT‐MMS), integrates the Farm‐level Economic Model (FEM) and the Agricultural Policy Environmental eXtender (APEX) model, as well as national databases and clustering and aggregation algorithms. Using micro simulations of statistically derived representative farms and subsequent aggregation of farm‐level results, a wide range of agricultural best management practices can be investigated within CEEOT‐MMS. In the present study, CEEOT‐MMS was used to evaluate the economic and water quality impacts of nitrogen (N) and phosphorus (P) based manure application rates when implemented on all animal feeding operations in the State of Texas. Results of the study indicate that edge‐of‐field total P losses can be reduced by about 0.8 kg/ha/year or 14% when manure applications are calibrated to supply all of the recommended crop P requirements from manure total P sources only, when compared to manure applications at the recommended crop N agronomic rate. Corresponding economic impacts are projected to average a US$4,800 annual cost increase per farm. Results are also presented by ecological subregion, farm type, and farm size categories. 相似文献