首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amount of extruded polystyrene (XPS) waste has increased in recent years due to the increase of its use in the thermal insulation of buildings, transport vehicles, and refrigerators, among others. Dissolution with suitable solvents to achieve a volume reduction of more than 100 times without degradation of polymer chains is one of the cheapest and most efficient methods of recycling XPS. Several environmentally friendly solvents have been tested as dissolution agents for XPS volume reduction; the action of these solvents does not produce any degradation of polymer chains. The solubility of the polymer in such solvents at different temperatures was investigated. The solvent can be easily recycled by distillation, obtaining a high-quality recycled polymer. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   

2.
Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined.Experimental results have shown that to develop a “green process” the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at different temperatures has been investigated. The solvent can be easily recycled by distillation.  相似文献   

3.
4.
The production of H2 by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H2 streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO2 from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H2 yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H2 producing microflora leading to a reduction in specific H2 production.Adsorption of CO2 from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H2S onto the activated carbon also took place, there being no evidence of H2S present in the bio-H2 exiting the column. Nevertheless, the concentration of H2S was very low, and this co-adsorption did not affect the CO2 capture capacity of the activated carbon.  相似文献   

5.
Recycling and reuse of industrial wastes in Taiwan   总被引:1,自引:0,他引:1  
Eighteen million metric tons of industrial wastes are produced every year in Taiwan. In order to properly handle the industrial wastes, the Taiwan Environmental Protection Administration (Taiwan EPA) has set up strategic programs that include establishment of storage, treatment, and final disposal systems, establishment of a management center for industrial wastes, and promotion of recycling and reuse of industrial wastes. The Taiwan EPA has been actively promoting the recycling and reuse of industrial wastes over the years. In July 1995 the Taiwan EPA amended and promulgated the Criteria for the Industrial Waste Storage, Collection and Processing Facility, July, 1995 that added articles related to general industrial waste recycling and reuse. In June 1996 the Taiwan EPA promulgated the Non-listed General Industrial Waste Reuse Application Procedures, June, 1996, followed by the Regulations Governing the Permitting of Hazardous Industrial Waste Reuse, June 1996, setting up a full regulatory framework for governing industrial waste reuse. To broaden the recycling and reuse of general industrial wastes, the Taiwan EPA has listed 14 industrial waste items for recycling and reuse, including waste paper, waste iron, coal ash, tempered high furnace bricks (cinder), high furnace bricks (cinder), furnace transfer bricks (cinder), sweetening dregs, wood (whole/part), glass (whole/part), bleaching earth, ceramics (pottery, brick, tile and cast sand), individual metal scraps (copper, zinc, aluminum and tin), distillery grain (dregs) and plastics. As of June 1999, 99 applications for reuse of industrial wastes had been approved with 1.97 million metric tons of industrial wastes being reused.  相似文献   

6.
This paper aims to evaluate the potential for the use of recycled expanded polystyrene and wood flour as materials for the development of wood plastic composites. The effects of wood flour loading and coupling agent addition on the mechanical properties and morphology of wood thermoplastic composites were examined. In addition, a methodology for the thermo-mechanical recycling of expanded polystyrene waste was developed. The results show that the mechanical properties decreased as the wood flour loading increased. On the other hand, the use of poly(styrene-co-maleic anhydride), SMA, as a coupling agent improved the compatibility between the wood flour and polystyrene matrix and the mechanical properties subsequently improved. A morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The density values obtained for the composites were compared with the theoretical values and showed agreement with the rule of mixtures. Based on the findings of this work, it appears that both recycled materials can be used to manufacture composites with high mechanical properties and low density.  相似文献   

7.
The recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this paper, recycling techniques of carbon fiber-reinforced plastic (CFRP) using supercritical and subcritical fluids were reviewed. The matrix resin of CFRP such as epoxy resin or resol resin was decomposed by supercritical and subcritical fluids, and the carbon fiber without thermal damage was recovered from CFRP. Mainly, water or alcohol was used as decomposition medium.  相似文献   

8.
The emission of waste in an economy, including landfill, is to a large extent determined by its patterns of technology, institutions, and lifestyle. A mathematical model (the waste input–output model) is presented that gives a simple analytical representation of this interdependence. The model was used to evaluate the effects of alternative waste disposal and recycling options on the levels of industrial production, landfill consumption, and the emission of carbon dioxide, and also to analyze the overall dependence on landfill of individual industries. It was found that a systematic combination of the options could be effective in reducing the overall landfill consumption and carbon dioxide emission. Received: November 4, 2000 / Accepted: August 2, 2001  相似文献   

9.
A new recycling process for the supercritical CO2 (sc-CO2) extraction of polybrominated diphenyl ethers from waste high impact polystyrene (HIPS) was developed in this paper. HIPS was first dissolved in d-limonene. The remaining decabromo diphenyl ether (decaBDE) particles in solution were then removed by centrifugation, and the PBDEs in the centrifugate solution were further extracted by sc-CO2. The influence of temperature and pressure, the volume ratio of sc-CO2 to plastic solution, and the concentration of decaBDE in the solution on the separating efficiency were investigated. The decaBDE particles in 20 % of the HIPS solution can be removed by centrifugation at a speed of 10,000 r/min at 30 °C. The suitable sc-CO2 fluid conditions were 65 °C and 20 MPa, and the optimum volume ratio of the sc-CO2 to the HIPS solution was 2:1. More than 97 % of the PBDEs were successfully removed, and the concentration of PBDE residues in the recycled HIPS was reduced to lower than 0.1 % (dry) by this recycling process.  相似文献   

10.
简要介绍了化学链燃烧分离CO2技术的原理和关键部分,接着以技术要点中的载氧体为重点,介绍了固体燃料(煤)化学链燃烧分离CO2技术中载氧体的研究进展,并就钙基载氧体能否适应化学链燃烧展开了讨论。  相似文献   

11.
废弃印刷线路板(WPCBs)既有污染环境的一面,又有可资源化回收利用的一面.通过机械物理法、热解、超临界流体氧化和离子液体溶解等方法对其进行分离和回收金属和非金属材料.初步分选的金属需要进一步提纯以实现高附加值.而非金属材料可以用热解法、微波处理、超临界流体技术、等离子技术等技术进行产气和能量回收,也可以通过制备建筑材料或填料和其它功能村料进行物料回收.总之,对WPCBs进行适当地处理不但可以减轻环境压力,还可以变废为宝,实现资源再生利用.  相似文献   

12.
A pot experiment was conducted to investigate the efficacy of a post-fire land management practice, including plant cultivation (Lolium perenne) combined with poultry manure addition, for restoring the protective vegetation cover in soils degraded by high intensity wildfires. The greenhouse experiment was performed with three burnt pine forest soils with added poultry manure at two doses of application and comparing the data with those obtained using NPK fertilizer. A significant effect of the amendment, soil properties and the interaction between amendment and soil properties on vegetation cover (phytomass production, nutrient content) was detected, but often the amendment treatment explained most of the variance. Changes induced by the organic amendment were more marked than those induced by inorganic fertilization. The increase of phytomass and nutrient uptake with poultry manure addition indicated the beneficial effects of this soil management practice. These findings can serve to develop field experiments and burnt soils reclamation technology.  相似文献   

13.
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.  相似文献   

14.
Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled.  相似文献   

15.
This investigation proposes the development of the selective dissolution process for recycling food packaging and other polymeric wastes. This process takes into account that the specific solvent of a particular polymer which is to be separated, must be a non-solvent for the remaining polymers. Likewise, taking into account the solubility of each polymer into various solvents as well as its production costs, the order of the polymers produced can be polyvinylchloride (PVC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polybutadiene (PB), polyacrylnitrile (PAN), polyesters (PES), nylon and polyurethanes (PU). However, cost analysis of the process revealed that the recycling of food packaging polymers in the order of PE, PVC, PP, and PS is more cost-effective.  相似文献   

16.
17.
介绍了国内外利用微藻固定CO2和生产生物燃料技术的最新研究和应用情况,指出了存在的问题和主要研究方向,展望了该技术的发展前景。  相似文献   

18.
This work presents a new process for dechlorinating poly-vinyl chloride (PVC) by the use of oyster-shell waste. The process consists of milling of PVC waste with oyster-shell waste, followed by washing the milled sample with water. The milling of PVC and oyster-shell mixture results in size reduction and rupture in bonds, leading to mechanically induced reactions between the two to form CaCl2 and hydrocarbon with C=C bonds. Washing the milled mixtures with water at room temperature allows complete removal of chlorine from the milled sample. More than 95% of chlorine in PVC was removed when 2h grinding is conducted for the mixture. The present process could offer a potential route to the handling and disposal of oyster-shell and PVC wastes.  相似文献   

19.
以水为吸收液,采用旋转填充床分离微生物厌氧发酵沼气中的CO_2,考察了工艺条件对CO_2吸收效果的影响。实验结果表明:进液量越大、气液比越小、进口CO_2体积分数越小、操作压力越大、进液温度越低则CO_2的吸收效果越好,而床转速以适中为宜;在进液量60 L/h、气液比3.3、床转速1 000 r/min、进口CO_2体积分数40%、操作压力1.2 MPa、进液温度5℃的条件下,CO_2吸收率为57.4%,提纯后气体的CO_2体积分数为17%。  相似文献   

20.
Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号