首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

2.
The aim of this paper was to investigate the effect of recycled polypropylene (PP) on the rheological, mechanical and thermal properties of wood flour polypropylene composites. Beforehand, the influence of wood flour treated with a coupling agent on the rheological behaviour had been looked at. By analysing moduli and viscosity curves and studying the thermal and mechanical properties of samples with 10% filler it was possible to see that the recycled PP that was added change in either its physical properties or its rheology. In the other wood plastic composites (WPC) studied, slight changes in the rheology behaviour were observed. However, the same processing parameters may be used with and without recycled PP. Recycled PP is appropriate for these kinds of composites to maintain the optimal rheological properties that make it easier to process the material by extrusion. Furthermore, it is also possible to maintain the thermal and mechanical properties in comparison with the behaviour of virgin PP/wood flour composites.  相似文献   

3.
This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood–fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.  相似文献   

4.
Hybrid composites of thermoplastic biofiber reinforced with waste newspaper fiber (NF) and poplar wood flour (WF) were prepared. The weight ratio of the lignocellulosic materials to polymer was 30:70 (w:w). Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were also used as the polymer matrix and coupling agent, respectively. The mechanical properties, morphology and thermal properties were investigated. The obtained results showed that tensile and flexural modulus of the composites were significantly enhanced with addition of biofibers in both types (fiber and flour), as compared with pure PP. However, the increasing in WF content substantially reduced the tensile, flexural and impact modulus, but improved the thermal stability. This effect is explained by variations in fiber morphological properties and thermal degradation. Increasing fiber aspect ratio improved mechanical properties. The effect of fiber size on impact was minimal compared to the effects of fiber content. Scanning electron microscopy has shown that the composite, with coupling agent, promotes better fiber–matrix interaction. The largest improvement on the thermal stability of hybrid composites was achieved when WF was added more. In all cases, the degradation temperatures shifted to higher values after addition of MAPP. This work clearly showed that biofiber materials in both forms of fiber and flour could be effectively used as reinforcing elements in thermoplastic PP matrix.  相似文献   

5.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

6.
The study was carried out to investigate the effects of filler content and two different compatibilizing agents (Eastman G-3003 and G-3216) on the mechanical properties of polypropylene reinforced with corn stalk and wood flour. In the sample preparation, three levels of filler loading (30, 40 and 50 wt%) and one level of compatibilizing agent content (2.5 wt%) were used. For overall trend, with addition of both grades of the compatibilizing agents, tensile and flexural properties of the composites significantly improved, as compared with the pure PP. Tensile and flexural properties reach a maximum at 40 wt% filler content and gradually decrease with a further increase in wood particle content. The composites treated with G-3003 gave better results in comparison with G-3216. This could be caused by the high melt viscosity of G-3003. In general, corn stalk flour filled composites showed superior mechanical properties.  相似文献   

7.
Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.  相似文献   

8.
The main objective of this research was to study the potential of waste agricultural residues such as sunflower stalk, corn stalk and bagasse fibers as reinforcement for thermoplastics as an alternative to wood fibers. The effects of two grades (Eastman G-3003 and G-3216) of coupling agents on the mechanical properties were also studied. In the sample preparation, one level of fiber loading (30 wt.%) and three levels of coupling agent content (0, 1.5 and 2.5 wt.%) were used. For overall trend, with addition of both grades of the coupling agents, tensile, flexural and impact properties of the composites significantly improved, as compared with untreated samples. In addition, morphological study revealed that the positive effect of coupling agent on interfacial bonding. The composites treated with G-3216 gave better results in comparison with G-3003. This could be caused by the high melt viscosity of G-3003. In general, bagasse fiber showed superior mechanical properties due to its chemical characteristics.  相似文献   

9.
Detailed analysis of the effects of recycling process on long-term water absorption, thickness swelling and water desorption behavior of natural fiber polypropylene composites is reported. Composite materials containing polypropylene and wood flour, rice hulls or bagasse fibers were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis and Fourier transform infrared spectroscopy was employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process.  相似文献   

10.
Environmental degradation and global warming are increasing as a result of the use of petroleum. Therefore, many industries are seeking more eco-friendly materials that will decrease the level of environmental contamination and economic cost. Recently, the level of coffee consumption has increased rapidly. Therefore, the amount of coffee grounds discarded is increasing. In this study, polylactic acid, coffee grounds and bamboo flour were compounded for green composites. Coffee grounds are used in the recycling of food waste. In addition, 4,4-methylene diphenyl diisocyanate (MDI) was used as a coupling agent. The mechanical strength of green composites decreased with increasing natural filler content. However, mechanical and thermal properties were increased by the addition of MDI as a coupling agent. The hydroxyl groups of natural fillers reacted with the isocyanate group of MDI, and a urethane linkage was created between the polymer and natural fillers.  相似文献   

11.
In this research, the influence of thermo-mechanical degradation of polypropylene (PP) on water absorption and thickness swelling of beech wood flour–PP composites were studied. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions. The results showed that the melt flow index, water absorption and thickness swelling of PP significantly increase by extrusion and re-extrusion. The virgin PP and degraded polypropylene were compounded with wood flour (at 60% by weight wood flour loading) in a counter-rotating twin-screw extruder in presence or absence of MAPP to produce wood flour–PP composites. From the results, the composites containing recycled PP exhibited higher water absorption and thickness swelling. The use of MAPP decreased water absorption and thickness swelling in composites made of virgin or recycled PP.  相似文献   

12.
The utilization of the coffee husk fiber (CHF) from the coffee industry as a reinforcing filler in the preparation of a cost-effective thermoplastic based composite was explored in this study. The chemical composition and thermal properties of the CHF were investigated and compared with those of wood fiber (WF). CHF proved to be mainly composed of cellulose, hemicellulose and lignin, and exhibited similar thermal behavior to WF. High density polyethylene (HDPE) composites with CHF loadings of from 40 to 70% were prepared using melt processing and extrusion. The processing properties, mechanical behavior, water absorption and thermal performance of these composites were investigated. The effect of maleated polyethylene (MAPE) used as a coupling agent on the composite was explored. The experimental results showed that increasing the CHF loading in the HDPE matrix resulted in an increase in the modulus and thermal properties of the composites, but resulted in poor water resistance. The addition of a 4% MAPE significantly improved the interfacial behavior of the hydrophilic lignocellulosic fiber and the hydrophobic polymer matrix.  相似文献   

13.
The steady increase in production of corn based ethanol fuel has dramatically increased the supply of its major co-product known as distiller’s dried grain with solubles (DDGS). Large amount of DDGS and corn flour are used as an animal feed. The elusieve process can separate DDGS or corn flour into two fractions: DDGS fraction with enhanced protein and oil content or corn flour fraction with high starch content, and hull fiber. This study investigated the feasibility of using fiber from DDGS and corn grain as alternative fillers to wood fiber in high density polyethylene (HDPE) composites made with two different sources of polymers. Two fiber loading rates of 30 and 50% were evaluated for fiber from DDGS, corn, and oak wood (control) to assess changes in various physical and mechanical properties of the composite materials. Two HDPE polymers, a bio-based HDPE made from sugarcane (Braskem), and a petroleum based HDPE (Marlex) were also compared as substrates. The biobased polymer composites with DDGS and corn fibers showed significantly lower water absorption than the Marlex composite samples. The Braskem composite with 30% DDGS fiber loading showed the highest impact resistance (80 J/m) among all the samples. The flexural properties showed no significant difference between the two HDPE composites.  相似文献   

14.
To explore the commercial viability of Polyhydroxybutyrate (PHB)/wood flour (WF) composites, systems were produced at industry-standard levels of fiber loading. Further, four interfacial modifiers were selected to improve the mechanical properties of PHB/WF composites, including maleated PHB (PHB-g-MA), a low molecular weight epoxy, a low molecular weight polyester, and polymethylene-diphenyl-diisocyante (pMDI). Results showed that all modifiers resulted in improvements in tensile strength and modulus, however, pMDI showed the highest improvements. The pMDI modifier also improved water uptake of the composites. Study of the fracture surfaces showed signs of improved fiber bonding, as did morphological studies by dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Interpretation of the DSC and DMA results indicate possible reactions with lubricant, and interactions between PHB and wood fibers with the addition of pMDI.  相似文献   

15.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

16.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   

17.
Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites   总被引:2,自引:0,他引:2  
Environmentally friendly composite materials can be prepared using wood fibers and/or various types of agro-derived fibers as reinforcements. In this study, agro-residues such as wheat straw and corn stem filled polypropylene were prepared and their suitability was investigated as a reinforcing filler in thermoplastics and as an alternative to the wood flour filled plastics. Effect of compounding techniques, compatibilizer and fungal treatment of agro-residues on the mechanical properties of the composites were evaluated. It was found that high shear compounding of wheat straw fibers exhibited similar properties to that produced by the milled wheat straw. This may be due to the extensive fiber breakage occurred during the high shear compounding that results in a similar aspect ratio to that of milled straw. Compatibilizer is needed for improving the strength properties of the agro-residue filled PP composites. Fungal treatment of milled wheat straw did not show much improvement in the strength properties of the composites. Comparison of mechanical properties of the agro-residue filled PP with that of the wood flour and the old newsprint filled PP showed the suitability of the agro-residues as alternative filler for thermoplastics.  相似文献   

18.
The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.  相似文献   

19.
Dimensional stability and mechanical performance of polypropylene thermoplastic composites filled with sunflower stalk (SS) flour at 30, 40, 50, and 60 wt% contents of the SS flour were investigated. The thickness swelling and water absorption of the specimens increased with increasing SS flour content. The modulus in the flexural and tensile improved with increasing SS flour content while the tensile and flexural strengths of the specimens decreased. The use of maleic anhydride polypropylene (3 wt%) had a positive effect on the dimensional stability and mechanical properties of the polypropylene thermoplastic composites filled with SS flour. The melting temperature of polypropylene decreased with increasing content of the SS flour. The degree of crystallinity of filled polypropylene composites between fibre loading of 0–30 % by weight was higher than that of unfilled polypropylene composites. However, further increment in the filler content decreased the degree of crystallinity. The obtained results showed that SS flour could be potentially suitable raw material in the manufacture of polypropylene composites.  相似文献   

20.
The insulation material of electronic devices should offers high thermal conductivity whilst retaining suitable mechanical properties. Epoxy resin is an example of a material that is commonly used by industry for electronic insulation, despite the fact that neither the thermal conductivity nor the mechanical properties are particularly satisfying. These properties can be enhanced by incorporating filler, with silica flour representing the most popular filler. An economically appealing solution is to replace silica flour with fly ash as filler material, however it must be remembered that compatibility of fly ash and epoxy resin is not ideal. In order to improve the coupling between these two materials, fly ash particles covered with [3-(2-Aminoethylamino)propyl]trimethoxysilane were obtained with six different conditions of the silanization process, where the amount of silane, the temperature and the time of the reaction were changed. The presence of the silane layer was confirmed via Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis and Scanning Electron Microscopy. The mechanical properties, including tensile strength, Young Modulus and fracture toughness, as well as the thermal conductivity of the final samples were investigated. In the case of composites with silanized fillers, all of the mechanical properties were improved, and an enhancement of thermal conductivity was observed for several composites. Moreover, the differences in coupling between the silanized fly ash and the untreated fly ash, and the epoxy matrix were precisely recorded by means of SEM. The presented studies confirm that an effective silanization process can significantly improve the properties of composites, while also verifying the usefulness of waste material. The results highlight that fly ash may be utilized to create a more economically affordable insulation material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号