首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Method for determination of methane potentials of solid organic waste   总被引:15,自引:0,他引:15  
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.  相似文献   

2.
3.
Journal of Material Cycles and Waste Management - This paper describes the clarification of the critical organic load and the inhibition factors of thermophilic dry methane co-fermentation of...  相似文献   

4.
Journal of Material Cycles and Waste Management - The objective of this study is to evaluate the influence of the addition of garden waste (GW) on the performance of food waste (FW) anaerobic...  相似文献   

5.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   

6.
Manufacturing processes in fish canning industries generate a considerable amount of solid waste that can be digested anaerobically. The aim of this research was to study the biochemical methane potential of different solid fish waste. For tuna, sardine and needle fish waste, around 0.47g COD-CH(4)/g COD(added) was obtained in batch experiments with 1%TS; whereas for mackerel waste, the methane production attained 0.59g COD-CH(4)/g COD(added). The increase in the waste/inoculum ratio, from 1.1-1.3 to 2.8-3.3g VS(waste)/g VS(inoculum), led to overload due to VFA and LCFA accumulation. Afterward, co-digestion assays of fish waste with gorse were undertaken but the biochemical methane potential did not improve.  相似文献   

7.
8.
An anaerobic reaction model is represented and used for simulation of the biodegradation of organic compounds and the generation of biogas. The model is based on fundamental relationships among physical, chemical, thermodynamic and microbial processes occurring in municipal landfills. Local microbially mediated degradation processes occurring in municipal landfills are simulated in terms of hydrolysis of readily and inherently degradable organic matter, the formation of acetate as surrogate for intermediary low-molecular carbon substrates, and the generation of the biogases CH4 and CO2. Thus, the overall decomposition of the organic matter has been assumed to follow three sequential anaerobic reactions steps: hydrolysis, acetogenesis and methanogenesis. In order to study the impact of environmental factors on the biological decomposition processes, experiments have been conducted to investigate the effect of temperature and water content. In the degradation model, the impact of temperature and water content was defined as reaction rate influencing factors. Further, waste samples have been taken from four drill holes on a municipal landfill near Wolfsburg (Germany) and used to analyze and to describe the waste composition and prevailing environmental conditions dependent on the depth of the drill hole. The data and waste samples obtained from the landfill have also been used for model development and validation.  相似文献   

9.
The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 °C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste).A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, YpMAX and θMIN) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μmax) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d−1 (K = 1.391 d−1; YpMAX = 1.167 L CH4/gDOCc; θMIN = 7.924 days) vs. 0.135 d−1 (K = 1.282 d−1; YpMAX = 1.150 L CH4/gDOCc; θMIN = 9.997 days) respectively.Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.  相似文献   

10.

Anaerobic digestion (AD) is a well-established process for the treatment of a wide variety of solid organic substrates, including the organic fraction of municipal solid waste (OFMSW). At industrial scale, the mechanical pretreatment is a fundamental step to reduce OFMSW particle size and to promote the hydrolysis within the subsequent AD process. Among the mechanical pretreatment technologies, press-extrusion has recently raised great interest for its possible application to either enhance the organic load to the digester or improve the overall process stability and methane yields. Aim of this study was in assessing the potential of the press-extrusion pretreatment to improve the performance of OFMSW anaerobic degradation. Batch tests were set up according to a full factorial design of experiments to assess the significance of the main operating parameters. The statistical analysis of results addressed further tests, carried out under semi-continuous feeding mode, to better discuss the possible application of press-extrusion for the greatest valorization of OFMSW under anaerobic conditions.

  相似文献   

11.
The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions.  相似文献   

12.
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 °C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 ± 0.02 L g VSfeed?1 to 0.55 ± 0.05 L g VSfeed?1 as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.  相似文献   

13.
Journal of Material Cycles and Waste Management - In this investigation, mesophilic co-digestion of both slaughterhouse waste (SHW) with household waste (HSW) was carried out using a 50 L...  相似文献   

14.
Journal of Material Cycles and Waste Management - Municipal solid waste (MSW) landfills are the third largest source of global methane emissions as biogas (11%). In developing countries, MSW...  相似文献   

15.
16.
The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 °C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8–69.6 and 106.6–117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84–5.12% and 7.96–8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.  相似文献   

17.
The present study aims to investigate the potential of nonedible oilseed Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) defatted residual biomasses (whole seed, kernel, and hull), as solid biofuel. These biomasses showed good carbon contents (39.8–44.5%), whereas, fewer amounts were observed for sulfur (0.15–0.90%), chlorine (0.64–1.76%), nitrogen (0.9–7.2%) and ash contents (4.0–8.7%). Their volatile matter (60.23–81.6%) and calorific values (17.68–19.98 MJ/kg) were found to be comparable to coal. FT-IR and chemical analyses supported the presence of good amount of cellulose, hemicellulose and lower lignin. The pellets prepared without any additional binder, showed better compaction ratio, bulk density and compressive strength. XRF analysis carried out for determination of slagging–fouling indices, suggested their ash deposition tendencies in boilers, which can be overcome significantly with the optimization of the blower operations and control of ash depositions. Thus, overall various chemical, physical properties, thermal decomposition, surface morphological studies and their high biofuel reactivity indicated that residual biomasses of Jatropha and Karanja seeds have high potential to be utilized as a solid biofuel.  相似文献   

18.
Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal.  相似文献   

19.
Journal of Material Cycles and Waste Management - Methane has tremendous potential for energy production, and enormous amounts of energy can be produced using suitable technology. To address this...  相似文献   

20.
Five different fractions of the biodegradable municipal solid waste (BMSW) were evaluated as potential animal feedstuffs. For each source of waste (meat waste (MW), fish waste (FW), fruit and vegetables waste (FVW), restaurant waste (RW), household waste (HW)), samples were obtained from small shops (butchers, fishmongers, fruit and vegetable shops), restaurants and a MSW treatment plant (household waste). The chemical composition, microbiological characterization, dioxins, furans, PCB's and mineral content were determined for every type of waste fraction. The analysed biodegradable waste presented high moisture content (from 60% to 90%). Some fractions were dense in one nutrient: meat waste in ether extract, fish waste in crude protein, fruit and vegetable waste in nitrogen free extract. The other studied fractions (restaurant fraction and household fraction) presented a more balanced composition, but the presence of toxic concentrations of contaminants such as metals was higher than European legislation permitted values in animal feeding. From a microbiological standpoint, a heat treatment at 65 degrees C for 20 min was sufficient to ensure microbiological quality of the samples. This treatment was also advisable to reduce the moisture content: a lower moisture content facilitates the waste handling and processing and, therefore, the inclusion of these waste fractions in commercial animal diets. This paper presents a potential alternative for the recovery of organic matter content in municipal solid waste. The results obtained in this research and the feedstuffs legislation in force related to animal feed, indicated that some of the studied biodegradable waste fractions (meat waste, fruit and vegetable waste and fish waste) could be considered as alternatives to typical raw materials used in animal feeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号