首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

2.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

3.
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kWth. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 °C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm3), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 °C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.  相似文献   

4.
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500 °C and reaction residence time of 0, 30, 60 min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375 °C and 0 min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.  相似文献   

5.
Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator.  相似文献   

6.
The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production.  相似文献   

7.
Effects of heating rate, gas flow rate, and type of metal compounds on the amount of hydrogen chloride, liquid, gas, and solid pyrolyzate obtained from the pyrolysis of poly(vinyl chloride) (PVC) were investigated. The pyrolysis experiments were carried out in both a thermogravimetric analysis (TGA) instrument and a fixed-bed reactor. Products from the fixed-bed reactor were collected and analyzed by using Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), titration technique, and gravimetry. It was found that heating rate in the TGA experiments did not affect the amount of released hydrogen chloride. However, the TGA profiles significantly changed with the rate. The onset of dehydrochlorination increased with the rate. In addition, as the heating rate was increased from 10 to 20°C/min, there was no solid residue left. The amount of liquid pyrolyzate obtained from the fixed-bed reactor can be either increased or decreased with the heating rate, depending on the gas flow rate and the actual residence time in the reactor. FTIR and GC-MS analysis indicated that the liquid pyrolyzates were mainly benzene, toluene, and styrene. By comparing the efficiency of various metal compounds in trapping the HCl, it was found that Ca(OH)2 was more efficient than Mg(OH)2, and that CaO was more efficient than MgO. These results are discussed in light of the reaction mechanism between HCl and the metal compounds.  相似文献   

8.
The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m3 chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 ± 1 °C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m3 d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m3/m3 d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.  相似文献   

9.
The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 °C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste).A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, YpMAX and θMIN) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μmax) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d−1 (K = 1.391 d−1; YpMAX = 1.167 L CH4/gDOCc; θMIN = 7.924 days) vs. 0.135 d−1 (K = 1.282 d−1; YpMAX = 1.150 L CH4/gDOCc; θMIN = 9.997 days) respectively.Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.  相似文献   

10.
This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO2 g VS−1 day−1. Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L−1 d−1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO2 at a rate lower than 25 mg CO2 g VS−1 d−1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO2 g VS−1 d−1. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.  相似文献   

11.
Hydrothermal treatments using subcritical water (HTSW) such as that at 234 °C and 3 MPa (LT condition) and 295 °C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources.While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char.Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing.From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.  相似文献   

12.
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg−1, 1 g kg−1, 10 g kg−1, and 100 g kg−1 on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ? 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics.  相似文献   

13.
Biowastes are becoming potential feedstocks for direct utilization or conversion to solid, liquid and gaseous fuels via various thermochemical routes. In this regard, jute dust which is a major agro-industrial waste in jute mills was pyrolysed in a fixed-bed reactor with an aim to study the product distribution and their characterization and to identify the optimum condition for bio-oil yield. The investigated process variables were temperature (400–700 °C), heating rate (10 and 40 °C/min) and nitrogen gas flow rate (50–250 ml/min). The yield of bio-oil is found to be maximum at 500 °C with a heating rate of 40 °C/min. However, further increase in temperature leads to decrease in bio-oil yield. Chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as 1H NMR, FTIR and GC–MS. The heating value of the bio-oil is 26.71 MJ/kg. The study shows that jute dust have potential for conversion to bio-oil through the process of pyrolysis to supplement the petro-derived liquid fuel for heating and transportation applications after upgrading. The biochar produced as a co-product of jute dust pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration.  相似文献   

14.
The unstable nature of biocrude oils produced from conventional pyrolysis of biomass is one of the properties that limits its application. In the disposal of poultry litter via pyrolysis technology, the biocrude oil produced as a value-added product can be used for on farm applications. In this study, we investigated the influence of bedding material (wood shavings) on the storage stability of biocrude oils produced from the fast pyrolysis of poultry litter. The biocrude oils produced from manure, wood (pine and oak), and mixtures of manure and wood in proportions (75:25 50:50, and 25:75 w/w%) were stored under ambient conditions in sealed glass vials for a period of 6 months and their stability were monitored by measuring the changes in viscosity over time. The manure oil had the lowest rate of viscosity change and thus was relatively the most stable and the oils from the 50:50 w/w% litter mixtures were the least stable. The rate of viscosity change of the manure biocrude oil was 1.33 cP/day and that of the 50/50 litter mixture was 7.6 cP/day for pine and 4.17 cP/day for oak.The spectrometric analyses of the biocrude oils showed that the presence of highly reactive oxygenated functionalities in the oil were responsible for the instability characteristic of the litter biocrude oils. The poor stability of the biocrude oil from the 50:50 w/w% litter mixtures was attributed to reactions between nitrogenous compounds (amides) from protein degradation and oxygenated compounds from the decomposition of polysaccharides and lignin. The addition of 10% methanol and 10% ethanol to the oil from 50% manure and 50% pine reduced the initial viscosity of the oil and was also beneficial in slowing down the rate of viscosity change during storage.  相似文献   

15.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

16.
Fly ash (FA) and vinasse (VN), two industrial wastes, are generated in huge amounts and cause serious hazards to the environment. In this experiment, different proportions of these two wastes were used as food for two epigeic earthworms (Eisenia fetida and Eudrilus eugeniae) to standardize the recycling technique of these two wastes and to study their effect on fungal especially cellulolytic fungal population, cellulase activity and their isozyme pattern, chitin content and microbial biomass of waste mixture during vermicomposting. Increasing VN proportion from 25% to 50% or even higher, counts of both fungi and cellulolytic fungi in waste mixtures were significantly (P ? 0.05) increased during vermicomposting. Higher cellulase activity in treatments having 50% or more vinasse might be attributed to the significantly (P ? 0.05) higher concentration of group I isozyme while concentrations of other isozymes (group II and III) of cellulase were statistically at par. Higher chitin content in vinasse-enriched treatments suggested that fungal biomass and fungi-to-microbial biomass ratio in these treatments were also increased due to vermicomposting. Results revealed that Eudrilus eugeniae and Eisenia fetida had comparable effect on FA and VN mixture during vermicomposting. Periodical analysis of above-mentioned biochemical and microbial properties and nutrient content of final vermicompost samples indicated that equal proportion (1:1, w/w) of FA and VN is probably the optimum composition to obtain best quality vermicompost.  相似文献   

17.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

18.
This paper presents a study to evaluate the recently developed enzymatic hydrolysis test (EHT) through its repeated application to a waste treatment process. A single waste treatment facility, involving a biodrying process, has been monitored using three different methods to assess the biodegradable content of the organic waste fractions. These test methods were the anaerobic BMc, aerobic DR4 and the EHT, which is a method based on the enzymatic hydrolysis of the cellulosic content of waste materials. The input municipal solid waste (MSW) and the output solid recovered fuel (SRF) and organic fines streams were sampled over a period of nine months from a single mechanical biological treatment (MBT) facility. The EHT was applied to each stream following grinding to <10 mm and <2 mm, in order to investigate the effect of particle size on the release of dissolved organic carbon (DOC) from enzyme hydrolysis. The output organic fines were found to more biodegradable than the MSW input and SRF output samples in each of the test methods, significantly (p < 0.05) for the EHT and DR4 methods, on the basis of DOC released and oxygen consumed, respectively. The variation between sample replicates for the EHT was higher where sample sizes of <2 mm were analysed compared to sizes of <10 mm, and the DOC release at each phase of the EHT was observed to be higher when using particle sizes of <2 mm. Despite this, additional sample grinding from the <10 mm to a smaller particle size of <2 mm is not sufficiently beneficial to the analysis of organic waste fractions in the EHT method. Finally, it was concluded that as similar trends were observed for each test method, this trial confirms that EHT has the potential to be deployed as a practical operational biodegradability monitoring tool.  相似文献   

19.
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.  相似文献   

20.
To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound + thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90 °C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90 °C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H2S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90 °C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号