首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程. 结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3 μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%. 采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型. 对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.   相似文献   

2.
为研究河南省长时间序列的ρ(SO2)变化特征,运用MERRA-2卫星遥感资料并结合《大气污染防治行动计划》的实施,对河南省2001—2018年ρ(SO2)的时空分布特征进行分析.结果表明:①河南省2001—2018年ρ(SO2)的空间分布呈东北高、西南低的特征,高值、低值区域分别位于焦作市-新乡市-郑州市北部一带和洛阳市-三门峡市-南阳市交界一带;秋季、冬季ρ(SO2)高于春季、夏季,冬季ρ(SO2)比春季、夏季高50%~70%.②2011年前,河南省年均ρ(SO2)不断上升,北部较南部增速快,年均增速为3.5~4.0 μg/(m3·a);2011年后,西北部大部分地区ρ(SO2)呈下降趋势,焦作市-新乡市-安阳市一带下降最快.③2013年《大气污染防治行动计划》实施后,河南省北部ρ(SO2)呈递减趋势,濮阳市及其周边下降最快,降速超过0.4 μg/(m3·a);但中南部仍呈缓慢增长趋势,增速高达0.6 μg/(m3·a).研究显示,主要污染物总量的减排和《大气污染防治行动计划》的实施促进了河南省ρ(SO2)的下降,但不处于京津冀大气污染传输通道“2+26”城市的地区ρ(SO2)下降速度较慢甚至略有增长,应进一步加大非传输通道城市大气污染防治力度.   相似文献   

3.
谭叶玲  邹长伟  黄虹  魏宸 《环境科学研究》2019,32(12):2098-2107
为定量云水和云下冲刷分别对降水中SO42-、NO3-的贡献,并进一步解析云下冲刷颗粒相和气相物质分别对降水样品中SO42-、NO3-的贡献,于2016年4月-2017年2月采用APS-3A型降水自动采样仪对降水进行分段采集.采用离子色谱检测分段降水样品的ρ(SO42-)、ρ(NO3-),分析其变化规律;在降水前、降水中及降水后同步采集并检测大气颗粒相ρ(SO42-)、ρ(NO3-)和气相ρ(SO2)、ρ(NO2),分析颗粒相中ρ(SO42-)、ρ(NO3-)和气相中ρ(SO2)、ρ(NO2)的变化与分布.结果表明:①ρ(SO42-)、ρ(NO3-)在同一场降水的分段样品中呈逐渐降低至后期趋于平稳的趋势,说明降水对空气中污染物的冲刷使空气逐渐清洁,后期冲刷作用有限使得降水中离子质量浓度趋稳.②颗粒相中ρ(SO42-)、ρ(NO3-)与气相中ρ(SO2)、ρ(NO2)在降水前较高,在降水中减小,并在降水后回升,说明降水对颗粒相SO42-、NO3-和气相SO2、NO2均有清除作用,降水结束后无云下冲刷作用,污染物质量浓度逐步回升.③云水对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为22%~56%(平均值为35%)、9%~49%(平均值为29%),云下冲刷颗粒相SO42-、NO3-对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为39%~69%(平均值为55%)、43%~73%(平均值为56%),云下冲刷气相SO2、NO2对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为5%~17%(平均值为10%)、5%~19%(平均值为15%).研究显示,降水中SO42-、NO3-主要来源于云水和云下冲刷颗粒相SO42-、NO3-,而来源于云下冲刷气相SO2、NO2较少.   相似文献   

4.
小型燃油锅炉大气污染物排放特征   总被引:5,自引:2,他引:3  
燃料燃烧是大气污染物的重要来源之一,对人体健康、空气质量和气候变化产生严重影响. 以85台小型燃油锅炉(≤10.5 MW)的颗粒物(PM),SO2和NOx排放实测数据为基础,通过统计分析方法,研究了大气污染物PM,SO2和NOx的排放特征及其影响因素,分析了我国小型燃油锅炉PM,SO2和NOx的排放现状. 结果表明,在未采取控制措施的条件下,ρ(PM)与燃油灰分〔w(灰分)〕和硫含量〔w(S)〕无关;而在过量空气系数(α)>1时,ρ(SO2)与燃油w(S)之间呈现显著的正线性相关性;ρ(NOx)与燃油氮含量〔w(N)〕不具有相关性,而随过量空气系数的增大而增大. 实测得到ρ(PM),ρ(SO2)和ρ(NOx)平均值分别为20.0,259.9和318.2 mg/m3;所有测试锅炉的ρ(PM)远远小于《锅炉大气污染物排放标准》(GB13271—2001)所规定的最高允许排放限值,有90%以上的锅炉达到ρ(SO2)最高允许排放限值,有84%的锅炉达到ρ(NOx)最高允许排放限值.   相似文献   

5.
利用差分吸收光谱系统对O3,SO2和NO2的监测分析   总被引:4,自引:0,他引:4  
结合我国对空气质量自动监测系统质量保证的要求及差分吸收光谱(DOAS)技术自身的技术特点,重点讨论了对南京江北地区的大气污染物的DOAS监测数据的质量控制, 并对2007年12月—2008年8月ρ(O3),ρ(SO2)和ρ(NO2)的日、季节变化特征进行了分析. 结果表明:ρ(O3),ρ(SO2)和ρ(NO2)小时均值的频率分布峰值分别出现在30~40,20~30和30~40 μg/m3;三者超过《环境空气质量标准》(GB3095—1996)一、二级标准的频率分别为4.37%和1.02%(O3),21.78%和0.89%(SO2),5.65%和0 (NO2);ρ(O3)季节变化十分明显,春季最高;ρ(SO2)和ρ(NO2)的日变化与局地排放源、大气扩散能力和人类活动密切相关;ρ(O3)和ρ(NO2)日变化呈负相关.   相似文献   

6.
近周边电厂源对北京市采暖期间SO2的贡献分析   总被引:10,自引:7,他引:3  
应用中尺度气象模式(MM5)与区域多尺度空气质量模型(CAMx)的耦合模型系统,模拟研究了2005年采暖期间近北京地区电厂源排放对北京市空气质量的影响;采用SO2贡献来源识别技术筛选了对北京市空气质量影响大的区域电厂源. 结果表明:近北京地区电厂源对北京市ρ(SO2)的影响从南到北呈递减趋势,其对北京城区、北京全市ρ(SO2)月均贡献值分别为6.97和6.40 μg/m3;影响北京城区ρ(SO2)的电厂排放源主要来自张家口、唐山、天津、石家庄、廊坊和衡水等地区,占ρ(SO2) 总贡献值的83.2%;为缓解北京采暖期间SO2污染压力,应首先控制和削减张家口、天津、唐山、石家庄地区SO2排放量大的电厂源.   相似文献   

7.
以2012年3月-2014年2月香港葵涌港口大气ρ(O3)、ρ(NO2)和ρ(NOx)的小时均值为研究对象,运用多重分形去趋势互相关分析法,对香港港口近地面ρ(O3)与ρ(NO2)和ρ(NOx)相互作用的多重分形特征进行研究.结果表明:香港港口O3 vs NO2[ρ(O3)vs ρ(NO2),下同]的h(2)(广义Hurst指数)为0.80,O3 vs NOx[ρ(O3)vs ρ(NOx),下同]的h(2)为0.79,二者的h(2)均大于0.5,表明ρ(O3)与ρ(NO2)、ρ(NOx)间均存在显著的长程交叉相关性.港口ρ(O3)与ρ(NO2)、ρ(NOx)相互关系的多重分形特性在日际和季节上存在显著差异,其中夜晚的O3 vs NO2的Δα(分形强度指数)为0.92,O3 vs NOx的Δα为0.81,而白天二者的Δα分别为0.59和0.43,说明夜晚的多重分形特征明显强于白天;Δα为春季>夏季>秋冬,表明多重分形程度在春季最强,夏季次之,秋冬季最弱,可能与港口特殊的地理位置和气候条件有关.研究显示,在构建港口ρ(O3)的预测模型时,需要考虑不同的时间尺度、不同气象条件下ρ(O3)与ρ(NO2)、ρ(NOx)相关性的多重分形特征的差异性.   相似文献   

8.
在2000年珠江三角洲工业排放清单基础上,利用2003年工业能源消耗量,结合文献和实测排放系数,建立了珠江三角洲2003年工业排放清单. 比较2个工业排放清单发现,2003年珠江三角洲SO2,NOx的工业总排放量比2000年分别增加60%与50%;排放增加主要在东莞、佛山、广州和珠海. 利用在线大气化学模式(WRF-Chem)分别对2个工业排放清单进行数值模拟,结果表明: ρ(SO2),ρ(NOx)变化趋势与污染源排放的变化有较好的对应关系,ρ(SO2)在东莞、广州和佛山增加最多,最大增值分别为180,150和150 μg/m3;ρ(NOx)增加最多的地区也在东莞、广州和佛山,最大增值分别为60,30 和30 μg/m3. SO42-与NO3-和一次污染物的高值中心不对应且变化趋势有差异,表明二次污染物的分布不仅受排放影响,同时也受污染物输送与转化的影响.   相似文献   

9.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   

10.
为研究Na2SO4中毒SCR催化剂(V2O5-WO3/TiO2催化剂)对SO3生成特性的影响,采用湿式浸渍法制备w(Na)为3%的Na2SO4中毒SCR催化剂,并通过N2物理吸附/脱附、XRD(X射线衍射)技术、SEM(扫描电镜)、XPS(X射线光电子能谱)分析技术对催化剂的物理化学特性进行表征.结果表明:①随着反应温度的升高,所有催化剂上的SO3生成率逐渐增加.当温度升至490℃时,SCR催化剂上的SO3生成率为0.85%,而3% Na2SO4中毒SCR催化剂上的SO3生成率高达1.36%.SO42-的存在导致V-O-S增多,从而促进SO3的生成.②随入口ρ(SO2)的增加,SO3生成率呈下降的趋势.当入口ρ(SO2)为1 000 mg/m3时,3% Na2SO4中毒SCR催化剂上的SO3生成率为1.02%,而SCR催化剂上仅为0.60%.ρ(SO2)对SO3生成率的影响主要依赖于温度和催化剂活性位点数等.③N2物理吸附/脱附、XRD和SEM表征结果表明,与SCR催化剂相比,Na2SO4中毒SCR催化剂表面有Na2SO4的积聚,出现了裂纹和大孔隙,催化剂的比表面积和孔容下降,这些变化均不利于催化剂的催化性能;XPS结果表明,Na2SO4的加入提高了表面化学吸附氧含量,降低了活性组分中w(V4+)/w(V5+)的值.研究显示,相比于SCR催化剂,Na2SO4中毒SCR催化剂上的SO3生成率大幅增加.   相似文献   

11.
大气污染防治综合决策支持技术平台典型城市应用研究   总被引:1,自引:0,他引:1  
以典型城市济南市为研究对象,利用大气污染防治综合决策支持技术平台(简称“技术平台”)综合评估了济南市《2018年大气污染治理“十大措施”实施方案》(简称“‘十大措施’”)的实施效果,并进一步基于特定空气质量目标〔济南市2018年ρ(PM2.5)、ρ(O3)同比2017年分别下降20%、8%〕开展大气污染防治策略寻优及费效评估.结果表明:①“十大措施”实施后,SO2、NOx、VOCs、一次PM2.5减排率分别为39%、24%、42%、41%,该情景在2017基准年气象条件下可使济南市2018年ρ(PM2.5)同比下降19%,新增治污成本约4.70×108元,效益-成本比约1.40;单位减排成本最低的本地扬尘源减排对ρ(PM2.5)下降的贡献率最大,建议济南市下一阶段应进一步强化扬尘源减排.②经过策略寻优,反算得到了SO2、NOx、VOCs、一次PM2.5的减排率分别为46%、20%、42%、60%的优化策略,该策略下的新增治污成本约4.69×108元;对比“十大措施”,优化策略提高了SO2和一次PM2.5的减排率,降低对O3具有负贡献的NOx减排率,满足空气质量目标的同时又尽可能地降低了治污成本,将效益-成本比提升至1.88.技术平台在济南市的初步成功应用,为济南市下一阶段的大气污染防治提供基于实证的科学依据;同时对其在我国城市逐步推广具有重要示范意义,可有效支撑大气污染防治综合科学决策制定.   相似文献   

12.
由于大气是一个复杂介质,低层大气中湍流的存在使物质和能量的交换很剧烈,污染物的扩散传输现象明显.对不同高度不同区域的低层大气做立体观测,获取气态污染物浓度分布最直接的资料很有必要.综合利用地面观测站点、系留气球和飞机平台,于2016年11月25—26日在天津武清高村一次污染天气条件下对NOx和O3进行立体观测,得到了污染物的地面、垂直和低空区域分布特征,并结合气象因子进行分析研究.观测结果表明,地面$\varphi $(NOx)水平较高,日均值为230×10-9,超过了GB 3095—2012《环境空气质量标准》二级标准的限值,反映了高村冬季较高的污染水平,主要受当地交通源排放的影响.$\varphi $(NOx)随高度的上升呈下降趋势,受风速的影响明显,主要积聚在逆温层以下.低空$\varphi $(NOx)市区高于郊区,而处于更远郊区的高村$\varphi $(NOx)与市区相当,也反映了高村本地较高的NOx污染.高村地面$\varphi $(O3)低,日最大8 h平均值为8×10-9,反映了冬季低温辐射弱、光化学反应强度低的特点.随高度增加$\varphi $(O3)呈上升趋势,垂直分布特征主要与温度层结有关.低空$\varphi $(O3)呈郊区高于市区,高村(远郊区)高于近郊区的特征.研究显示,$\varphi $(NOx)的升高导致$\varphi $(O3)下降,这可能与高村冬季的$\varphi $(VOCs)/$\varphi $(NOx)偏低有关,需要结合VOCs观测数据做进一步分析.   相似文献   

13.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

14.
为了明确泰山顶PM2.5及其二次组分的输送路径与潜在来源,基于后向轨迹聚类方法对2015年冬季和春季抵达泰山顶的气团传输轨迹进行聚类分析,并利用PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)方法分析泰山顶冬季和春季PM2.5、SO42-、NO3-和NH4+的潜在源域.结果表明,冬季和春季来自不同方向的气团轨迹对泰山顶PM2.5及其组分的潜在源分布的影响具有明显差异.冬季泰山顶ρ(PM2.5)和ρ(NO3-)平均值的最高值对应的气团轨迹来自湖北、河南、山东济宁等地区,而来自西北方向的轨迹1和轨迹2分别对应的ρ(SO42-)和ρ(NH4+)平均值最高;春季影响ρ(PM2.5)和ρ(NO3-)的气团轨迹主要来自西南方向的河南、安徽北部、山东聊城等地区,而源自蒙古国途经内蒙古、山西、河南北部和山东聊城的气团轨迹对ρ(SO42-)和ρ(NH4+)的贡献最大.泰山顶ρ(PM2.5)、ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的PSCF分布特征与CWT分布特征类似,WPSCF(源区分布概率)和CWT的最高计算值主要集中山东济宁、聊城以及邻近的山西省、河北省和河南省,是泰山顶大气污染物的主要潜在源域.   相似文献   

15.
为研究黄石市大气PM2.5中水溶性离子组成、质量浓度变化特征及来源,于2012年3月-2013年2月在湖北省黄石市利用MiniVol颗粒物采样器采集PM2.5样品,用离子色谱分析了9种水溶性离子(NH4+、Ca2+、Mg2+、Na+、K+、Cl-、NO3-、SO42-、F-)的质量浓度,并采用PMF(正定矩阵因子分析法)模型讨论了不同离子的来源.结果表明:观测期间黄石市大气PM2.5中ρ(总水溶性离子)的年均值为(61.5±26.8)μg/m3,占ρ(PM2.5)的63.9%,各离子质量浓度的高低顺序依次为ρ(SO42-)> ρ(NO3-)> ρ(NH4+)> ρ(Na+)> ρ(Cl-)> ρ(Ca2+)> ρ(K+)> ρ(F-)> ρ(Mg2+).二次无机离子SNA(为SO42-、NO3-和NH4+的统称)是水溶性离子的主要成分,占全部所测水溶性离子的74.4%.ρ(NO3-)/ρ(SO42-)范围为0.12~1.29,平均值为0.53±0.30,说明全年观测点附近主要以固定源污染为主.4个季节的SOR(硫氧化率)和NOR(氮氧化率)均大于0.10,说明黄石市PM2.5中的SO42-和NO3-主要是经二次转化形成的.阴、阳离子相关性研究发现,4个季节阴、阳离子总体相关性(R2为0.98)较好,并且全年PM2.5组分偏酸性.通过PMF模型源解析发现,黄石市大气PM2.5中水溶性离子主要来源于燃烧源、二次转化源和土壤/矿物扬尘源.研究显示,黄石市大气PM2.5中主要水溶性离子成分是SNA,燃烧、二次转化和土壤/矿物扬尘是其主要来源.   相似文献   

16.
为了探究SO42-沉降对潮汐淡水湿地温室气体排放通量的影响,在闽江河口短叶茳芏(Cyperus malaccensis)潮汐淡水湿地模拟SO42-沉降,采用静态箱法测定样地环境因子与3种温室气体(CH4、CO2、N2O)通量随SO42-添加量和不同月份的变化,采用多元逐步回归分析影响温室气体通量的关键因子.结果表明:①各环境因子和3种温室气体通量均具有显著的月际变化. ②添加SO42-显著增加了短叶茳芏种群密度和间隙水ρ(SO42-)、ρ(NH4+-N),但对其他环境因子无显著影响. ③添加SO42-显著抑制了CH4排放,当SO42-添加量(以SO42--S计,下同)为40和120 kg/(hm2·a)时,CH4通量分别减少了33.8%、69.9%;CO2和N2O通量随SO42-添加量的变化不显著,但分别趋于减小和增加,其中,SO42-添加量为40和120 kg/(hm2·a)时,CO2通量分别减少了5.2%、11.8%,N2O通量则分别增加了98.0%、103.0%. ④相关分析和多元逐步回归分析结果显示,沉积物温度及间隙水ρ(SO42-)、ρ(NH4+-N)、ρ(NOx--N)(NOx--N主要包括NO3--N和NO2--N)是影响样地3种湿地温室气体排放通量的关键因子. ⑤当SO42-添加量为40和120 kg/(hm2·a)时,3种温室气体排放产生的综合温室效应呈减小趋势,分别降低了5.5%和13.5%.研究推断,SO42-沉降速率的升高有助于缓解潮汐淡水湿地对全球气候变暖的贡献.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号