首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
嵊泗海域是舟山渔场的重要组成部分,属于国家海洋特别保护区.为了解嵊泗海域表层沉积物中16种优控PAHs(多环芳烃)的污染特征及潜在风险,于2017年6月采集了嵊泗海域18个站点的表层沉积物样品,采用气相色谱-质谱联用技术确定PAHs质量分数及其分子组成,运用特征分子比值法和主成分分析法识别PAHs来源,并采用质量基准法与质量标准法对沉积物中PAHs潜在生态风险进行评价.结果表明:①除了Ace与Act外,其他14种PAHs均被检出.除A1站点外,w(Phe)最高,w(Flra)次之.检出的PAHs以3环和4环为主,占总量的71.21%,不同环数PAHs占比大小依次为3环> 4环> 5环> 2环> 6环.w(∑14PAHs)范围为46.38~196.36 ng/g,平均值为109.40 ng/g.整体分布上,嵊泗海域表层沉积物中w(∑14PAHs)呈近岸高于远岸的分布特征.②嵊泗海域表层沉积物中PAHs以煤炭、柴油和生物质等燃烧源为主,部分站点同时受到燃烧源与石油源影响.③各站点的w(∑14PAHs)均低于ERL和OEL,表明嵊泗海域潜在生态风险较小.④与国内外其他区域相比,嵊泗海域表层沉积物中w(∑14PAHs)处于较低污染水平,尚不足以对当地渔业生态环境造成负面影响,但作为我国重要"蓝色粮仓",仍应加强其陆源排放监管.   相似文献   

2.
松花湖是吉林省面积最大的湖泊和重要水源地,具有防洪排涝、灌溉供水、航运旅游等重要功能.为探究松花湖中PAHs(多环芳烃)和PAEs(邻苯二甲酸酯)的主要污染来源及生物毒性风险,于2017年7月采集松花湖21个表层沉积物样品,采用GC-MS测试16种US EPA(美国环境保护局)优先控制PAHs和6种PAEs的质量分数,并通过统计学方法对调查结果进行分析.结果表明:①松花湖沉积物中w(∑16PAHs)范围为23.1~554.8 ng/g,平均值和中位值分别为172.9和123.2 ng/g,w(∑16PAHs)高值分布在漂河镇和丰满乡附近湖区,主要来源于石油燃烧污染,贡献率为57.9%,其次为煤及生物质燃烧污染、石油泄露污染,贡献率分别为21.1%、21.0%.②松花湖沉积物中w(∑6PAEs)范围为33.7~2 062.3 ng/g,平均值和中位值分别为240.4和72.7 ng/g,主要成分为DBP(邻苯二甲酸二正丁酯)和DEHP(邻酞酸二辛酯),w(∑6PAEs)高值分布在旺起镇附近湖区,其来源主要与城镇生活污染输入有关.③松花湖沉积物中PAHs、PAEs污染生态风险较低,只有部分采样点存在低度潜在生态风险,但旺起镇附近湖区沉积物中的w(DBP)已经临近ERL(效应区间低值),需加以关注.研究显示,松花湖PAHs、PAEs污染程度较低,为加强松花湖饮用水源地保护,应着重加强交通燃油污染源的风险防控,同时在乡镇附近湖区应加强燃煤和生活污染源的监管力度.   相似文献   

3.
为探明北运河流域(北京段)多层沉积物中PAHs(多环芳烃)的污染状况,利用活塞式底泥取样器于2014年11月采集了9处沉积物样品,取样深度为30~80 cm,每处样品根据其垂向介质特征大致分成3~4层,分别测定各层样品的粒径、TOM(总有机质)及16种PAHs的质量分数,探讨PAHs在河道沿程与垂向上的分布特征、来源及生态风险评价.结果表明,北运河流域(北京段)沉积物以砂质壤土为主,w(TOM)(以干质量计,下同)为103.4~146.8 g/kg,w(∑16PAHs)为598.1~28 730.6 ng/g,各层w(∑16PAHs)为108.5~8 810.8 ng/g.沉积物中PAHs以高环为主,主要包括有Phe(Phenanthrene,菲)、Fla(Fluoranthene,荧蒽)、Pyr(Pyrene,芘)、BbF〔Benzo(b)fluoranthene,苯并[b]荧蒽〕.在河道沿程变化上,中下游沉积物的污染程度远高于上游.在垂向变化上,w(TOM)和沉积物粒径对PAHs的分布影响有限,PAHs的垂向分布主要受所处沉积环境与历史污染程度影响.根据主成分分析与同分异构体比值法推断,PAHs主要来源于化石燃料与生物燃料的燃烧,少部分为石油源.利用效应区间值得出的生态风险评价结果表明,北运河流域(北京段)沉积物中PAHs可能已对环境产生负面影响,其中BbF、BkF、InP与BgP已对环境产生毒副作用,需要给予关注与解决.   相似文献   

4.
松花江表层沉积物PAEs分布特征及生态风险评价   总被引:1,自引:1,他引:0  
为揭示松花江干支流表层沉积物中邻苯二甲酸酯类(phthalate esters,PAEs)的空间分布特征及其生态风险状况本文利用气相色谱三重四级杆质谱联用仪(GC-MS)对松花江干支流表层沉积物中6种PAEs的含量分布和组成特征进行了分析,并采用商值法和环境风险水平(ERL)法对其生态风险状况进行评价.结果表明:①松花江干支流沉积物6种邻苯二甲酸酯(∑_6PAEs)含量范围(以干重计)为6 832.5~36 298.9ng·g~(-1)(平均值为18388.6ng·g~(-1)),邻苯二甲酸(2-乙基己基)酯(DEHP)和邻苯二甲酸二丁酯(DBP)为主要组分,干流点位∑_6PAEs含量(6 832.5~36 298.9 ng·g~(-1),平均值为18 616.9ng·g~(-1))与支流点位∑_6PAEs(10 367.6~26 593.3ng·g~(-1),平均值为18 264.1ng·g~(-1))差异不显著(P0.05),支流点位各PAEs单体含量与干流点位差异不大.从上游到下游干支流∑_6PAEs含量呈现先降后升的趋势.农业自然区域∑_6PAEs平均含量(18 677.5 ng·g~(-1))与城市工业区域(18 063.7 ng·g~(-1))相近(P0.05),DBP和DEHP是两区域内的主要PAEs两者平均值贡献率高达98%以上.②松花江干支流表层沉积物中∑_6PAEs主要来源于人类日用品、农业生产以及含有增塑剂的工业生产.③松花江表层沉积物中DMP和BBP对水生生物无生态风险,DEP具有低水平生态风险,而DEHP和DBP对水生生物具有高生态风险.  相似文献   

5.
为了解淮北平原某生活垃圾焚烧发电厂周边农田土壤中PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的污染状况及生态风险,按照点源扇形布点原则,在运行1 a的该生活垃圾焚烧发电厂周边不同风向2 km范围内布点,在距离电厂10 km以上的常年主导风向的上风向设置对照点,参照HJ/T 166-2004《土壤环境监测技术规范》共采集21个农田土壤样品.采用HPLC法测定样品中15种PAHs的含量,分析PAHs的空间分布特征和组分特征,在根据荷兰土壤环境质量标准评价土壤PAHs污染程度的同时,将其与国内其他相似污染源周边农田土壤中PAHs比对,进行生态安全评价.结果表明:该生活垃圾焚烧发电厂周边农田土壤中w(BaP)平均值为9.40 μg/kg(0.663~96.2 μg/kg),∑15PAHs(15种PAHs的质量分数)平均值为174 μg/kg(37.5~1 382 μg/kg),TEQ(BaP)15(15种PAHs的毒性当量)平均值为14.6 μg/kg(1.92~135 μg/kg),三者明显高于对照区的0.795 μg/kg(0.412~1.57 μg/kg)、52.6 μg/kg(27.2~68.8 μg/kg)和1.96 μg/kg(1.05~2.84 μg/kg);下风向w(BaP)、∑15PAHs和TEQ(BaP)15基本均高于上风向和对照区,最大值均位于距电厂1 km处.该生活垃圾焚烧发电厂周边农田土壤中高环PAHs组分含量为52.5%,高于对照区的35.3%;7种致癌性PAHs在∑15PAHs中的贡献率达43.0%,远高于对照区的22.2%.运行1 a的该生活垃圾焚烧发电厂周边农田土壤中个别采样点PAHs处于严重污染水平,w(BaP)、∑15PAHs和TEQ(BaP)15均高于国内相似污染源且增长迅猛,存在不容忽视的生态安全风险.研究显示,该生活垃圾焚烧发电厂周边农田土壤中的PAHs累积速度快,高环PAHs特别是BaP明显高于对照区,建议加强对生活垃圾焚烧发电厂PAHs排放及周边环境影响的监控,在环境影响评价时充分考虑PAHs污染.   相似文献   

6.
黄河全流域岸边表层土壤中PAHs的分布、来源及风险评估   总被引:1,自引:0,他引:1  
为研究黄河流域表层土壤的多环芳烃(PAHs)污染水平,于2015年5月期间采集了39个黄河全流域岸边表层土壤样品.研究了土壤中∑25PAHs和∑7carc PAHs的空间分布特征,利用同分异构体比值法和主成分分析法对其进行来源解析,并采用BaP毒性当量和超额终生癌症风险增量模型(ELCR)对多环芳烃进行风险评估.结果表明,黄河流域表层土壤样品中∑25PAHs浓度范围为18.23~6805.49ng/g,均值为343.764ng/g;∑7care PAHs含量为2.23~2796.34ng/g,均值为126.6ng/g.PAHs含量整体趋势为中上游高于下游,多数土壤样品中Ant/(Ant+Phe)<0.1,0.2-6~10-4之间,处于潜在风险水平.享堂ELCR值为10-3,呈现较高健康风险水平.  相似文献   

7.
为掌握渤海湾天津段多条河流入海区和海滨旅游度假区的近岸海域表层(0~5 cm)沉积物中PAHs(多环芳烃)的污染状况,对该区域表层沉积物中16种US EPA(美国国家环境保护局)优先控制PAHs的分布特征及其来源进行了调查和分析,并评估了其潜在生态风险和概率致癌风险. 结果表明:渤海湾天津近岸海域表层沉积物中w(PAHs)(16种PAHs质量分数之和,以干质量计)为23.9~672.8 ng/g,平均值为228.1 ng/g. 表层沉积物中PAHs的污染程度与历史调查结果相比有所加剧,并且呈复合型污染,在天津港港区外海域主要为石油制品污染,在研究区域南部则主要源于燃煤和生物质的不完全燃烧. 风险评估结果表明,海河入海口附近和研究区域北部存在潜在生态风险;研究区域内概率致癌风险处于较低水平,∑7TEQBaP(7种强致癌PAHs的苯并芘毒性当量浓度之和)占∑16TEQBaP〔16种PAHs的苯并芘毒性当量浓度之和〕的96.8%,其中二苯并蒽的致癌风险最大,其次为苯并芘.   相似文献   

8.
针对我国长江典型江段丰、平、枯不同时期的地表水,采用了固相萃取—气相色谱质谱联用(GC-MS)的分析技术,调查了16种优先控制多环芳烃(PAHs)的污染状况.研究了长江干流PAHs的污染水平和分布特征,并在定量分析的基础上评估了长江干流PAHs的来源和生态风险.结果显示,Σ16PAHs浓度范围为2.22~1450.91ng/L,均值为107.04ng/L,其中,平水期武汉江段Σ16PAHs浓度最高,均值为1050.64ng/L,长江干流PAHs污染状况与近5a国内其他水体相比处于中等偏低水平.空间分布上长江典型江段地表水中Σ16PAHs从上游攀枝花江段到下游南京江段呈现出先上升后下降的趋势;时间分布上Σ16PAHs的变化趋势为平水期(187.78ng/L)>丰水期(73.30ng/L)>枯水期(38.02ng/L).由同分异构比值法分析表明:在枯水期和平水期中,煤炭、生物质燃烧和石油源是长江干流PAHs的主要来源,而丰水期PAHs主要源于煤炭、生物质燃烧,其中南京江段PAHs的来源较为复...  相似文献   

9.
于2009年6月分别采集辽河和太湖表层沉积物样品,测定了多环芳烃(PAHs)和有机氯农药(OCPs)的含量.结果表明,辽河表层沉积物中∑PAHs含量(干重)为120.8~22120ng/g,平均值为3281ng/g,处于较高的水平;太湖∑PAHs的含量为256.6~1709ng/g,平均值为829.0ng/g,处于中等水平.两采样区的PAHs以4环和5~6环为主,荧蒽含量最高,PAHs主要因热解产生.辽河和太湖表层沉积物中OCPs的含量均处于较低水平,且均以β-HCH为主.利用相平衡分配法建立了15种PAHs和8种OCPs的沉积物基准值,对沉积物中PAHs和OCPs进行了生态风险评估,结果显示辽河流域的浑河段均有∑PAHs、∑DDTs和∑HCHs超标点位,具有较大的生态风险;太湖流域未发现超标点位,沉积物中各类污染物中含量均未超过基准值,生态风险较小.  相似文献   

10.
2016年7月于北江清远段采集21个水和表层沉积物样品,采用气相色谱质谱(GC-MS)法测定了样品中的PAHs(多环芳烃)含量,分析了北江水环境中PAHs的污染水平,并对其生态风险进行了评价.结果表明,水中ρ(∑PAHs)介于0.4~110.2 ng/L,表层沉积物中w(∑PAHs)(以干质量计,下同)在54.4~819.8 ng/g之间,平均值分别为41.7 ng/L和424.9 ng/g.与国内水体PAHs污染状况相比,北江清远段水中PAHs污染状况处于中低水平,而表层沉积物污染状况处于中等水平.运用特征比值法对PAHs来源进行分析表明,PAHs主要来源为石油泄漏、化石燃料燃烧.采用商值法对水中PAHs进行生态风险评价,∑PAHs和个别单体的最低风险浓度风险商值大于1.0而最高风险浓度风险商值小于1.0,处于中等污染水平;采用效应区间低、中值法对表层沉积物PAHs进行生态风险评价,仅个别点位表层沉积物中苊烯、蒽和二苯并[a,h]蒽超出生态效应低值,对生态环境潜在负面效应较小.研究显示,北江水和沉积物中PAHs潜在风险处于较低水平.   相似文献   

11.
为评估生活垃圾焚烧飞灰替代矿粉生产沥青混合料及其路面浇筑全过程中PAHs的环境风险,采用实验室模拟与实际铺筑过程相结合的方法,改变飞灰添加量(以w计,0、3%、4%和5%)和加热温度(200、165、145和80 ℃),以对PAHs的释放规律进行研究. 结果表明:在实际筑路过程中,PAHs的释放受加热温度的影响较大,ρ(∑16PAHs)随加热温度的下降而降低,其中混合料制备和道路开放使用阶段的ρ(∑16PAHs)分别为249.0~378.0、72.1~95.1 μg/m3;但在路面浇筑阶段ρ(∑16PAHs)有增加的趋势,为254.0~571.0 μg/m3,并且在该阶段内ρ(4环PAHs)降低,低环(2~3环)和高环(5~6环)的PAHs质量浓度升高. 飞灰的添加抑制了PAHs的释放,w(∑16PAHs)在10.4~12.3 μg/kg之间,毒性当量浓度(以TEQ计)在0.011 μg/kg左右. 飞灰的添加抑制了以萘为主的低环PAHs的释放,并且在3%添加量时对PAHs的抑制效果最好;在飞灰添加量为3%、4%和5%时,w(萘)分别降低了42.7%、32.2%和35.3%.   相似文献   

12.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:2,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

13.
昆明松华坝水库沉积物中PAHs垂直分布特征及其来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示昆明松华坝水库人类活动对PAHs(多环芳烃)的影响程度及其污染历史,研究了松华坝水库2根沉积柱(包括集水区人口较密集的1号柱和以山地为主的2号柱)中16种PAHs的垂直分布特征及其来源.结果表明:1号、2号柱中∑16PAHs(16种PAHs总量)分布范围分别为155.9~471.3和100.7~316.3 ng/g,但1号柱污染程度高于2号柱,可能与其集水区较高的人为排放有关.1号柱中∑16PAHs整体随采样深度的下降而降低,2号柱则随采样深度的下降而增长;这2根柱子PAHs的组成相似,沉积物中PAHs均以2环的Nap(萘)和3环的Phe(菲)为主(二者占比高于50%),高致癌性的4~6环PAHs也有较大占比.分子比值法和正定矩阵因子分解法结果显示,1号柱中PAHs主要来源顺序为生物质燃烧源(38.8%)>石油源(34.7%)>煤炭燃烧源(13.4%)>石化燃料燃烧源(13.1%),2号柱主要来源为石油源(44.4%)>生物质燃烧源(26.2%)>煤炭燃烧源(15.3%)>石化燃料燃烧源(14.1%),反映了集水区人类活动方式与强度对沉积物中PAHs的控制作用.   相似文献   

14.
已有的研究表明多环芳烃(PAHs)在南海珊瑚礁区广泛存在,然而有关珊瑚礁区长棘海星体内PAHs的污染特征尚不清楚。因此,本文采用气相色谱串联三重四极杆质谱仪(GC-MS/MS)对南海珊瑚礁区长棘海星组织中除萘(Nap)以外的15种优控PAHs进行了定量分析,探讨了长棘海星体内PAHs的富集特征及其来源。结果表明:(1)15种PAHs广泛存在于南海不同区域长棘海星组织中,其中胃组织中的PAHs总含量(∑15PAHs)[(107±96.9)ng/g dw]显著大于幽门盲囊[(29.0±34.5)ng/g dw]和表皮[(31.0±23.5)ng/g dw](p<0.01);(2)长棘海星组织中PAHs以3环为主(69%~85%),与南海珊瑚组织中的3环PAHs占比相当,这与长棘海星以珊瑚为食这一事实相符;(3)长棘海星∑15PAHs与辐径显著负相关(p<0.05),幼年长棘海星积累PAHs的能力更强;(4)长棘海星组织对海水中除苯并(k)荧蒽(BkF)外的大部分PAHs的生物富集因子(BAFs)均小于2000 L/kg,富集能力较弱;(5)南海长棘海星体内PAHs大部分为化石燃料和生物质等燃烧源,少部分来源于石油或成岩源。研究结果为长棘海星对PAHs的富集特征增加了新知。  相似文献   

15.
本文选取典型石化城市茂名市某石化工业园30名员工(男女各15名)进行裸露(额头、手掌)和遮蔽皮肤部位(前臂、小腿)的擦拭采样,通过气相色谱-质谱联用仪(GC-MS)测定了擦拭样品中15种多环芳烃的浓度(∑15PAHs)并计算了经皮肤暴露和手-口接触的人体暴露剂量。结果表明,皮肤样品中∑15PAHs的浓度范围为21~1.9×104ng/m2,不同部位间PAHs浓度存在显著性差异(P<0.01),表现为额头>手掌>前臂>小腿。PAHs以3~4环PAHs组成为主。男女性别间PAHs组成无显著差异,∑15PAHs女性高于男性,但无统计差异性。经皮肤吸收的PAHs日暴露剂量(DADderm)女性[41ng/(kg×d)]显著高于男性[28ng/(kg×d)]。手-口接触暴露剂量[0.34ng/(kg×d)]相比于皮肤暴露剂量[34ng/(kg×d)]可忽略不计。皮肤暴露剂量主要来自裸露部位皮肤的贡献(88%)。风险评价结果表明,PAHs的皮肤暴露和手-口接触暴露不存在明显的非致癌风险;但约7%员工的皮肤致癌风险高于可接受的水平(10-4),表明存在一定的PAH致癌风险。  相似文献   

16.
通过研究过去国内常用的两种有机氯农药滴滴涕(DDTs)和六六六(HCHs)在沉积物岩芯中的相关文献,总结和分析其在中国各地的历史沉积情况.结果表明:(1)∑4DDTs(p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE)浓度在安徽巢湖北岸六岔河流域最高,在1965年达到最大值(457ng/g dw),∑6DDTs(p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE, o,p'-DDE)浓度在广东省海陵湾最高,在2008~2010年达到最大值(3480ng/g dw),∑4HCHs(α-HCH,β-HCH,γ-HCH,δ-HCH)浓度在澳门河口最高,在1993年达到最大值(82.3ng/g dw);(2)∑4DDTs和∑4HCHs沉降通量在珠江三角洲最高,二十世纪七八十年代达到最大值,分别为115ng/(cm2×a)和32.5ng/(cm2×a),总体来说,DDTs和HCHs在中国沉积物岩芯中的浓度和沉降通量在南部地区要高于北部地区,平原地区和低纬度地区高于高寒地区(青藏高原)和高纬度地区(东北地区),水产养殖区或种植区高于非养殖区和非种植区;(3)从全国范围看,∑4DDTs和∑6DDTs浓度和沉降通量主要在20世纪70年代和21世纪中期出现峰值,少数研究区域峰值年份早在20世纪60年代,∑4HCHs浓度和沉降通量峰值主要出现在20世纪70年代和21世纪初,少数研究区域峰值年份早在20世纪60年代;(4)从全国范围看,(DDD+DDE)/DDT比值没有可循的变化规律,DDTs可能来源于历史沉积、成岩作用以及外源土壤、三氯杀螨醇的使用等新输入,而很多地区在20世纪后期到21世纪中期均出现α-HCH/γ-HCH降低到小于3,表明这段时期HCHs主要来源于林丹的使用.  相似文献   

17.
为探讨华北地区秋冬季重污染过程PM2.5(细颗粒物)中PAHs(多环芳烃)的污染水平、分布特征及来源,分别采集2018年11月17日—2019年1月19日德州市和北京市PM2.5样品,利用气相色谱-质谱法测量两个站点6次重污染过程中26种PAHs浓度水平,分析PAHs污染特征、分子组成分布及其来源,并利用毒性当量因子估算了PAHs毒性.结果表明:①6次重污染过程中,德州站点∑26PAHs浓度为62~191 ng/m3,北京站点为61~129 ng/m3.②单位质量PM2.5中PAHs的浓度北京站点更高.③两个站点PAHs分子组成分布较为一致,萘、蒽、芴等低分子量的PAHs浓度较低,高分子量PAHs浓度较高,浓度最高的分别为苯并[b]荧蒽、苯并[a]芘、苯并[a]蒽和甲基荧蒽等.④特征比值结果显示,PAHs来源包括柴油车尾气、燃煤和生物质燃烧,德州站点受生物质燃烧影响更为显著.⑤毒性当量计算结果表明,德州站点毒性当量浓度(TEQ)高于北京站点,6次重污染过程中两个站点PAHs的TEQ平均值在6.5~17.2 ng/m3之间,低于国内其他一些地区,但苯并[a]芘的浓度在5.2~13.1 ng/m3之间,超过了GB 3095—2012《环境空气质量标准》日均值的标准限值(2.5 ng/m3),对人体健康存在潜在危害.研究显示:秋冬季重污染过程中,北京站点单位质量PM2.5中PAHs的浓度较高,两个点位PAHs分子组成分布特征及来源较为相似,且均对人体健康存在潜在危害;应进一步加强对PAHs浓度水平的控制,这不仅有利于持续改善PM2.5污染,也有助于减轻人体潜在的健康风险.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号