首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

2.
本文基于WRF-CMAQ模型定量分析了气象条件变化对PM2.5的影响.全国337个城市2018~2019秋冬季气象条件转差导致PM2.5平均浓度同比上升约5.55%.24个省市气象条件同比转差,北京气象转差致使PM2.5同比上升约3.66%.从重点区域来看,京津冀及周边“2+26”城市气象条件转差最显著,汾渭平原次之,长江三角洲(以下称长三角)基本持平,分别导致PM2.5浓度同比上升约9.4%、8.3%、1.1%.“2+26”城市和汾渭平原气象条件在11月、1月、2月转差,10月、3月气象条件转好.长三角则10月、11月、3月气象条件转差;12月、1月、2月转好.“2+26”城市2018~2019秋冬季PM2.5浓度同比上升主要为气象条件转差所致;汾渭平原PM2.5同比变化较小,人为减排有效抵消了气象条件转差带来的不利影响;长三角PM2.5浓度同比下降,与气象条件变幅小且污染排放较去年同期降低有关.  相似文献   

3.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

4.
为探究浙江省城市大气颗粒物的组分污染特征,基于2019年10月1日至2020年9月30日浙江省内11个点位4个区域的手工采样监测数据,分析了浙江省PM2.5组分不同区域不同季节的污染特征.结果表明,采样期内浙江省各地区ρ(PM2.5)平均值范围为34.3~46.4μg·m-3,其中浙西和浙北内陆地区PM2.5浓度相对较高,分别高出均值15.1%和13.2%,浙东和浙南沿海地区PM2.5浓度相对较低,分别低于均值8.4%和14.9%.季节性特征呈现秋季和冬季较高,夏季最低,空间分布来看,浙南地区的PM2.5浓度春季、秋季和冬季季节变化不明显,浙西地区为:秋季>冬季>春季>夏季,浙北和浙东地区均呈现冬季>秋季>春季>夏季的季节变化特征.内陆地区采样期内,风景名胜区、行政区、居民区和商业交通居民混合区的ρ(PM2.5)分别为:(40.2±10.2)、(46.3±9.6)、(50.1±10.6)和(46.7...  相似文献   

5.
对2013年南昌市区9个自动空气质量监测点的ρ(PM2.5)数据进行分析,探讨了PM2.5浓度水平及时空分布特征,并采用轨迹聚类、PSCF(潜在源贡献因子)、CWT(浓度权重轨迹分析)进行了大气PM2.5的来源分析.结果显示:2013年南昌市区ρ(PM2.5)年均值为69.1μg/m3,超过GB 3095-2012《环境空气质量标准》二级标准限值(35μg/m3)的97%;ρ(PM2.5)昼夜变化呈双峰型分布,峰值位于09:00-11:00和20:00-22:00;月际变化呈两边高、中间低的"V"型趋势;ρ(PM2.5)有明显的季节性变化特征,由高到低依次为冬季、春季、秋季和夏季;ρ(PM2.5)空间分布呈由东南至西北递减的分布特征.气流轨迹聚类结果表明,南昌市气流输送季节性变化特征明显,夏季来自南方或东南方向的气流比例高达65.6%,而在另外三个季节,东北和偏北方向的气流分别占62.0%(冬)、59.6%(春)、54.7%(秋),对南昌市ρ(PM2.5)影响较大;夏季南方或东南方向的气流所占比例较高,为65.6%;PM2.5的PSCF和CWT的高值主要集中在南昌本地和邻近的浙江省及福建省北部地区,但周边的河南南部、江苏中部也是南昌市PM2.5的潜在来源地.   相似文献   

6.
选取中国6大城市群中的11座代表性城市为研究区域,将监测站点划分为城区、郊区和乡村站,进而分析各城市间PM2.5浓度的城乡差异规律.结果表明,同一城市群各城市之间,或同一城市的城区、郊区、乡村站间PM2.5日变化皆较为相似.京津冀和长三角地区的城市城区PM2.5浓度最高,高于郊区7.8%~9.7%,高于乡村11.3%~16.9%,而粤港澳大湾区和内陆城市群(成渝、长江中游、关中平原城市群)的城市郊区PM2.5浓度最高,高于城区2.6%~11.2%,高于乡村16.7%~26.5%.各城市间城乡PM2.5浓度差值的日变化规律不尽相同,可呈单峰(如上海)或双峰(如杭州)变化,极值可出现在白天(如广州),亦可在夜间(如深圳).PM2.5的排放与传输扩散共同对11城市城乡PM2.5浓度分布产生影响.  相似文献   

7.
灰霾试点城市PM2.5浓度特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用2011年PM2.5监测数据分析了灰霾试点城市PM2.5浓度特征,结果表明:灰霾试点城市PM2.5日超标比例范围为3.3%~42.9%,年均浓度超标严重;灰霾日PM2.5浓度和PM2.5/PM10较非灰霾日分别升高80.0%和4.1%。分析了北京总站点位在12月3-13日污染过程中颗粒物浓度变化特征,结果表明:颗粒物浓度升高和气象条件差是导致能见度降低的两大重要因素,OC/EC变化范围是3.6~11.4,存在严重的二次污染;粒子数浓度与能见度呈现负相关,污染日不同粒径段的粒子数浓度均高于清洁日,91.8%的粒子在1μm以下;地面气象条件和天气形势明显影响PM2.5浓度。  相似文献   

8.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

9.
利用环境监测、气象常规观测、美国国家环境预报中心(NCEP)再分析等资料,采用气溶胶激光雷达和HYSPLIT模式对2018年8月1—2日发生在天津市夏季的一次重污染天气过程进行分析。结果表明:地面弱气压场、低空逆温和偏东暖湿气流的输送为此次重污染形成提供了有利条件;气溶胶激光雷达分析表明,此次污染过程存在明显的水平输送和垂直分布特征,市区PM2.5浓度升高除与水平输送有关,还与本地低空逆温造成的PM2.5积累密切相关;HYSPLIT模式后向轨迹追踪研究表明,PM2.5前期积累爬升阶段,气团主要来自偏南气流,200、500、1 000 m高度气团均有明显沉降,后期气团来向转变为较清洁的偏东暖湿气流,但同时带来大量水汽,造成天津市相对湿度的增加。此次污染过程前期是由于静稳天气形势导致PM2.5积累,后期主要是天津市各区县之间PM2.5的输送以及偏东暖湿气流输送水汽导致相对湿度的增加,污染进一步加重。  相似文献   

10.
为探究邯郸市近5年冬季PM2.5污染特征及来源,于2016~2020年冬季采集PM2.5样品,对8种水溶性无机离子进行分析,利用主成分分析(PCA)模型解析污染源类型,选用后向轨迹和潜在源贡献因子(PSCF)模拟传输轨迹和污染来源.结果表明,2018年冬季PM2.5浓度最高,较2016、2017、2019和2020年升高60.44%、25.46%、91.43%和21.53%;2020年冬季水溶性无机离子(WSIIs)浓度较2016年下降18.86%,WSIIs/PM2.5降至26.69%.夜晚ρ(PM2.5)(110.20~209.65μg·m-3)高于白天(95.21~193.00μg·m-3),NO-3和NH+4浓度夜间涨幅更大,SO42-相反,Cl-浓度和占比逐年下降;2020...  相似文献   

11.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5...  相似文献   

12.
为研究渭南市区2014?—?2016年的冬春季雾霾天气的特点,选取覆盖渭南市区的4个监测站点,分析渭南市区PM_(10)和PM_(2.5)污染时间分布特征;同时选取日平均气温、相对湿度、风等气象因素,用线性回归分析法分析各个气象因素同大气中PM_(10)和PM_(2.5)的相互关系。研究发现:三年来冬季PM_(10)和PM_(2.5)的日变化的峰值主要出现在12月—?次年1月;春季PM_(10)和PM_(2.5)的逐日变化的峰值主要出现在3月;日内的周期变化趋势呈多次波动。渭南市区冬春PM_(10)和PM_(2.5)的质量浓度与风速、气温呈负相关,与相对湿度呈正相关,为雾霾的形成创造了条件,在冬季温度较高的情况下以及相对湿度较大的情况下应加强防范。在冬季12月—?次年1月和春季3月应注意雾霾的防范和治理,燃煤企业要安装脱硫脱硝装置,居民日常生活中尽量减少生物燃料的燃烧,同时政府应根据污染物排放量征税,用制度保护环境。  相似文献   

13.
于2012年12月—2013年12月在广州城区(市站)和东部郊区(九龙)开展为期一年的PM2.5样品采集,并同步收集气象因子和气态污染物质量浓度等数据.结果表明,PM2.5中主要化学组分为有机质(OM)和硫酸盐(SO2-4),分别占市站和九龙PM2.5质量浓度的49.4%和15.2%及57.0%和17.3%.碳质气溶胶(OM和EC)贡献接近50%,二次无机气溶胶(SO2-4、NO-3和NH+4总和,SIA)贡献超过30%.由于以机动车尾气为代表的移动污染源在城市区域贡献较大,市站[NO-3]/[SO2-4]比值显著高于九龙.两个站点[NH+4]/[SO2-4]摩尔质量比均高于1.5,表明观测期间广州市干季大气处于富铵状态.市站和九龙站硫氧化率(SOR)和氮氧化率(NOR)的时空变化趋势与O3类似,表明大气光化学过程是影响广州市SOR和NOR的重要因素.相对湿度低于65%时,SOR和NOR均较高;温度对SOR和NOR的影响有显著的城郊差异.降雨对PM2.5及各化学组分浓度有显著去除作用.  相似文献   

14.
基于北京、石家庄2017、2018年的1月和7月PM2.5样品采集,研究两地采暖期、非采暖期及典型重污染过程的PM2.5、SNA污染特征及二次转化特征.应用TrajStat模型,结合浓度权重轨迹分析法(CWT),分析两地PM2.5气流输送路径以及潜在源区.利用WRF-CAMx模式定量分析两地重污染月份(2017年1月)PM2.5、硫酸盐及硝酸盐的区域传输贡献.结果表明, 2017年1月北京和石家庄均存在重污染过程,两年1月石家庄市PM2.5浓度均高于北京; SNA占PM2.5所有组分的34.11%~51.68%,对PM2.5浓度有重要贡献,其中北京NO3-浓度最高,石家庄SO42-浓度最高, SO42-/NO3-夏季高于冬季;北京SOR高于石家庄,石家庄NOR高于北京,重污染期间两城市硫酸盐、硝酸盐、铵盐质量浓度、SOR与NOR明显升高;两地冬季气流主要受俄罗斯、蒙古、内蒙戈壁等地区的西北方向远距离输送影响,另外北京两年冬季均存在西南传输通道,石家庄重污染期间受冀南和鲁西北重工业城市群潜在贡献较高,两市夏季受东南季风影响,污染轨迹多来自渤海湾和山东等地区; 2017年1月,北京、石家庄PM2.5受周边区域传输贡献分别为33.80%、22.54%,其中河北南部分别贡献14.86%, 17.21%,二次离子中NO3-的传输作用比SO42-更加突出.从PM2.5本地源来看,北京主要来源为移动源和扬尘源,分别占比43.30%、20.10%,石家庄为工业、燃煤和扬尘,分别占比26.40%、24.82%、22.50%.  相似文献   

15.
基于2013~2020年高时空分辨率的PM2.5和O3在线监测数据以及气象观测数据,利用KZ(Kolmogorov-Zurbenko)滤波耦合逐步回归等技术,对天津市PM2.5和O3浓度变化趋势、相互关系和影响因素进行了分析.结果表明,与2013年相比,2020年天津市PM2.5浓度下降50.0%,O3浓度上升25.8%.从月际变化来看,与2013~2017年相比,2018~2020年天津市PM2.5浓度月际间差异逐渐缩小,O3浓度从4月开始出现明显上升,污染发生时间节点提前.O3与PM2.5的相关性呈现明显的季节性分布特征,冬季整体呈负相关,夏季正相关且相关性比其他季节高.不同季节O3与PM2.5之间的拟合斜率与相关性系数整体呈正比例关系,拟合斜率与相关性系数的比值逐年升高说明PM2.5对O3...  相似文献   

16.
When investigating the impact of air pollution on health, particulate matter less than 2.5 μm in aerodynamic diameter(PM_(2.5)) is considered more harmful than particulates of other sizes. Therefore, studies of PM_(2.5) have attracted more attention. Beijing, the capital of China,is notorious for its serious air pollution problem, an issue which has been of great concern to the residents, government, and related institutes for decades. However, in China,significantly less time has been devoted to observing PM_(2.5) than for PM_(10). Especially before 2013, the density of the PM_(2.5) ground observation network was relatively low, and the distribution of observation stations was uneven. One solution is to estimate PM_(2.5) concentrations from the existing data on PM_(10). In the present study, by analyzing the relationship between the concentrations of PM_(2.5) and PM_(10), and the meteorological conditions for each season in Beijing from 2008 to 2014, a U-shaped relationship was found between the daily maximum wind speed and the daily PM concentration, including both PM_(2.5) and PM_(10). That is, the relationship between wind speed and PM concentration is not a simple positive or negative correlation in these wind directions; their relationship has a complex effect, with higher PM at low and high wind than for moderate winds.Additionally, in contrast to previous studies, we found that the PM_(2.5)/PM_(10) ratio is proportional to the mean relative humidity(MRH). According to this relationship, for each season we established a multiple nonlinear regression(MNLR) model to estimate the PM_(2.5) concentrations of the missing periods.  相似文献   

17.
以汾渭平原典型城市——咸阳为研究区域,利用地面空气质量监测数据和欧洲中期天气预报中心(ECMWF)发布的第五代全球气候再分析资料数据集(ERA5),分析了咸阳市2018—2020年3 a采暖期污染物浓度变化特征和不同污染程度下的气象条件,采用统计学方法分析各项污染物浓度与气象因素间的相关性,使用多元线性回归模型评价各气象因素对PM2.5浓度的影响程度,使用二元Logistic回归分析气象因素对PM2.5超标风险的影响。咸阳市采暖期首要污染物以细颗粒物(PM2.5)和可吸入颗粒物(PM10)为主,采暖期超标最多的污染物为PM2.5,超标天数逐年递减;PM10的日变化呈“双峰双谷”型,PM2.5的谷值出现在17∶00且夜晚浓度较高。颗粒物浓度与相对湿度呈正相关,与风速、边界层高度、温度、气压呈负相关。多元线性回归预测模型显示PM2.5浓度预测值与实测值变化趋势保持一致,预测值的波动频率比实测值大,预测准确率为51.54%;二元Logistic回归模型显示:除相对湿度外,其他气象因素对PM2.5超标情况都是保护因素,边界层高度每增高1 m,日均浓度超标风险降低0.7%;相对湿度每升高1%,日均浓度超标风险升高5.3%;温度每升高1℃,日均浓度超标风险降低19.8%;气压每升高1 hPa,日均浓度超标风险降低9.7%。以上研究结果揭示了咸阳市采暖期主要气象因素对空气污染的影响程度,为我国北方城市今后的空气污染治理提供科学依据,为相关政策制定提供理论参考。  相似文献   

18.
了解大气污染物的潜在源区分布对制定污染物减排措施至关重要.本文采用HYSPLIT模型,模拟出抵达铁岭市地区72 h的主要气流轨迹,结合铁岭市2015—2018年PM2.5逐小时浓度数据资料,采用CWT方法(concentration-weighted trajectory method)对铁岭市PM2.5潜在源区浓度进行了分析,在此基础上,提出了PCWT方法(percentage concentration-weighted trajectory method),对铁岭市地区PM2.5潜在源区浓度占比及传输过程进行了定量分析.研究表明,铁岭市PM2.5来源呈现出不同的季节特征:春季PM2.5主要来源于铁岭市西北和南部地区,夏季PM2.5主要来源于铁岭市南部地区,秋季PM2.5主要来源于铁岭市西北部及东北部地区,冬季PM2.5主要来源于铁岭市西北部及铁岭市周边地区.铁岭市PM2.5主要来源于3个方向,其中来自铁岭西北方向的源区贡献值4年平均占比27.36%、东北方向占18.51%、西南方向占15.73%;铁岭及周边城市、吉林省松嫩平原、科尔沁沙地以及辽宁中部城市群、环渤海湾地区是铁岭市PM2.5的主要国内源区;俄罗斯、蒙古、朝鲜是铁岭市PM2.5的主要国外源区,且近几年有增加趋势.研究成果对建立铁岭市生态环境管控分区,制定有效防治大气污染措施有重要的科学支撑作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号