首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本文针对目前环境保护的热点之一——全球和地区性生物多样性保护,对其中的一个基础理论问题,即区域生物多样性评价标准进行了探索;从理论上对制定这一标准的必要性、可行性、生物多样性的基本内涵、区域生物多样性中心标准的意义及标准制定的原则和依据进行了阐述,并在此基础上提出了我国区域生物多样性中心标准的基本框架。  相似文献   

2.
生物多样性重要区域的识别是进行生物多样性保护的首要步骤。世界自然保护联盟(International Unionfor Conservation of Nature,IUCN) 2016年3月正式发布了生物多样性重要区域(简称KBAs)识别的全球标准(KBA标准)。首次系统地考虑不同层次的生物多样性及其要素,从基因层面、物种层面和生态系统层面定位和突显那些对于维护全球生物多样性具有重要贡献的地区,帮助各国和地区识别对维护全球陆地、内陆水域和海洋生物多样性有显著贡献的区域。该标准是IUCN近30多年以来开展不同生物类群、生态和专类别生物多样性重要区域识别的经验基础上提出来的又一重要全球标准。笔者对标准中几点关键原则进行了重点解读,并结合中国在生物多样性重要区域识别的研究进展提出了有针对性的建议。  相似文献   

3.
自然保护区大多面临生态保护与脱贫攻坚的双重任务,协调好乡村建设与生态保护的关系是问题的关键。以安徽鹞落坪自然保护区为例,从自然条件、生态限制和社会经济3个方面选取10项指标构建鹞落坪自然保护区聚落用地适宜性评价指标体系,对聚落用地适宜性进行评价。结果表明:鹞落坪保护区适宜建设区域面积仅占保护区总面积的21.80%,限制建设区域面积占19.03%,禁止建设区域面积占59.17%;现有聚落面积的75.10%分布在适宜建设区域,8.44%分布在限制建设区域,16.46%分布在禁止建设区域。根据评价结果,对现有聚落斑块分别提出发展、限制和退出3种布局优化策略。该研究有助于实现自然保护区内聚落的合理布局和生物多样性保护,对促进经济社会与生态环境协调发展具有现实意义。  相似文献   

4.
景观格局特征与区域生物多样性的关系研究   总被引:2,自引:0,他引:2  
景观格局决定景观的功能和生态过程,影响着景观内的物种流、信息流、能源流,从而对生物多样性产生显著作用。以鄱阳湖生态经济区为研究区域,运用SPSS 17.0和Fragstats 3.3等统计分析软件,从38个县区的景观特征中选取具有生态意义的景观指数与生物多样性进行相关分析,探讨景观格局特征与区域生物多样性的关系。结果表明,(1)景观类型水平上景观指数与生物多样性之间的关系表现不一,耕地部分指标如PLAND、NP、COHESION(0.476~(**),P0.01)与区域生物多样性指数呈正相关,耕地的景观特征与各物种大部分指标之间的相关关系呈不显著的负相关,表现出耕地景观与生物多样性具有复杂关系。区域内林地PLAND(0.439~(**),P0.01)、NP、COHESION(0.609~(**),P0.01)与区域生物多样性指数呈正相关,林地PD、LPI、AWMSI与区域生物多样性指数呈弱程度的负相关。林地景观除了跟植物的PLAND(0.655~(**),P0.01)、COHESION(0.729~(**),P0.01)呈极显著正相关外,与其他多数指标呈负相关。湿地景观大部分指标与区域生物多样性指数呈显著正相关。(2)景观水平上景观指数与生物多样性之间的相关性分析结果表明,区域的景观特征除MPS与区域生物多样性指数呈负相关外,其他景观指标都与区域生物多样性呈正相关,其中TA、NP、LSI、SHDI与区域生物多样性关系较为显著,说明景观的面积大小、数量、形状、多样性对生物多样性和各种生物过程都有较大影响。区域景观特征与生物多样性具有较好的相关性,关系较为复杂。区域内的湿地景观、林地景观是区域生物种的主要栖息场所,同时,作为产粮主产区,耕地景观的影响也不容忽视。因此,保护区域内的湿地、林地、耕地景观对于维持区域生物多样性具有重要作用。该研究对区域内生物多样性的保护和管理具有一定的理论指导意义。  相似文献   

5.
随着人类活动影响的加剧,生物多样性急剧丧失,如何遏制生物多样性的持续下降成为可持续发展所面临的严峻挑战,实际工作中迫切需要准确而快速地对区域生物多样性进行评估。以森林资源清查数据为基础,构建一套区域尺度陆地生物多样性的评价指标体系,并以北京市为案例区进行评价。依据生物多样性的评价结果,坚持连续性和完整性原则,以小班为单元,以高分辨率遥感影像为辅助,人工识别得到8个生物多样性热点区。热点区面积共计约3 791 km2,约占北京市国土面积的23%,全部位于北部和西部山区。结果表明,评价结果较好地反映了北京市生物多样性状况,所识别的热点区与物种调查结果相吻合,也涵盖了现有自然保护区。同时利用现有保护地和遥感影像,识别生物多样性空缺区和生态廊道的潜在分布区,形成生物多样性一张图。该方法简单成熟,无需复杂的专业背景,所用数据为各地基础调查数据,可为区域尺度的生物多样性评估,特别是缺乏生物多样性专业人才和物种调查数据的区域提供方法借鉴,在生物多样性保护工作中具有实际应用意义;同时以小班为单元的划界方法解决了一般规划落实难的问题,也可为政府部门的决策提供依据。  相似文献   

6.
2010年生物多样性目标:指标与进展   总被引:4,自引:1,他引:3  
针对全球生物多样性急剧下降的态势,2002年<生物多样性公约>缔约方大会通过了2010年生物多样性目标,即"到2010年大幅度降低全球、区域和国家的生物多样性丧失速度".文章分析了2010年生物多样性目标的产生背景和主要内容,讨论了2010年目标评估指标,阐述了全球和国家层次的2010年目标实施进展.最后,展望了2020年生物多样性目标及其战略重点、实施支持机制.  相似文献   

7.
全国重要生态功能区生态安全评价   总被引:5,自引:0,他引:5  
《全国生态功能区划》提出的50个国家重要生态功能区域,对于国家和区域生态安全保障具有重要指导意义。从生态胁迫和生态结构与功能2个方面选取指标构建生态安全评价体系,以2000、2005和2010年生态系统遥感数据为基础,分区对全国重要生态功能区生态安全进行评价,识别生态安全状况呈恶化趋势的区域,为全国重要生态功能区的生态安全保障工作提供理论基础和科学依据。结果显示,水源涵养区和生物多样性保护区的生态安全指数相对较高,土壤保持重要区的生态安全状况较差;重要生态功能区总体生态安全状况呈下降趋势,比较显著的变化包括洞庭湖洪水调蓄重要区和藏东南山地热带雨林生物多样性保护重要区的生态环境状况改善明显,黑河中下游防风固沙重要区的生态安全指数值最小且呈下降趋势。  相似文献   

8.
2020年全球生物多样性目标解读及其评估指标探讨   总被引:8,自引:0,他引:8  
2010年以来,全球开展了讨论和咨询,确定世界生物多样性保护的路线图。2010年10月在日本召开的《生物多样性公约》缔约方大会第十次会议通过了《生物多样性战略计划》(2011—2020年)。该战略计划确立了2020年全球生物多样性目标(简称2020年目标),设计了世界生物多样性保护的路线图和时间表,为制定国家目标提供了灵活的框架。该文剖析了《生物多样性公约》各缔约方对2020年目标的谈判立场,解读了2020年目标的内涵,论述了2020年目标评估指标研究的最新进展,在进一步加强生物多样性评价指标研究、建设生物多样性监测标准和网络、开展生物多样性长期监测方面提出了建议。  相似文献   

9.
城市生物多样性为城市生态系统提供了诸多生态系统服务,是实现城市可持续发展的基础。然而,随着城市人类活动加剧,自然景观向人工景观转变,城市生物多样性受到了严重威胁。作为判断生态系统的自然性或人为干扰度的科学方法,自然度评价对城市生物多样性保护和生态系统管理具有重要的指导作用。该文在辨析自然度及其评价概念的基础上,归纳了3种自然度评价方法:指示生物法、自然距离法、多指标综合评价法,从城市生境质量评估、城市景观动态监测、城市生态空间规划3个层面梳理了自然度评价在城市生物多样性保护中的应用研究进展,提出未来应加强城市生态系统自然度评价,并综合考虑生物多样性状态和变化、生态系统完整性、人类干扰和管理决策等因素,进一步将自然度评价纳入土地利用、社会经济和生态效应的综合研究中,揭示城市区域人类活动与生物多样性之间的关系。  相似文献   

10.
河口是连接淡水和海洋环境的重要过渡区,在维持生物多样性和生态系统服务方面发挥着重要作用。河口的生态完整性对于生态系统的可持续管理和保护至关重要。本文对河口生态完整性评价进行了文献计量学分析,重点介绍了河口生态完整性评价的评价方法和指标选择。主要包括物理化学指标、生物指标和社会经济指标。通过案例研究系统分析了不同指标选取对河口生态完整性评价的重要性。最后,指出了在河口生态完整性评价中仍面临一些问题,并针对这些问题提出了几点建议。  相似文献   

11.
We present a conservation index based upon the interaction of the size of terrestrial protected areas, remaining forest habitat, deforestation rates, and biological richness to identify conservation potentials, threats, and strategies for 23 Indo-Pacific countries. This conservation potential/threat index shows that four of the largest and most species-rich countries—China, Indonesia, India, and Thailand—contain 82% of the region's large reserves (more than 1000 km2) and 86% of the region's area designated for protection. The skewed regional distribution and small number of large reserves per country call for the expansion of existing protected areas and, where possible the establishment of new parks and transfrontier reserves. The index indicates high potential for conservation efforts in Papua New Guinea, Laos, Myanmar, New Caledonia, Vanuatu, and the Solomon Islands, which have a high percentage of remaining forested habitats. high species richness, or endemism, but which lack comprehensive protected area systems. The index also predicts that if current rates of deforestation continue, only Brunei, Bhutan, Indonesia, Taiwan, and Malaysia will have adequate proportions of their respective land areas under some form of protection while still maintaining a minimal percentage (20% or more) of forested habitat outside reserves. Based on the regional analysis, we identify priority countries for investment in biodiversity conservation, and we evaluate funding responses earmarked for those countries. We then show how the index can be adapted to different geographical scales using examples from Indonesia, Malaysia, and the Philippines.  相似文献   

12.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   

13.
Transboundary conservation is playing an increasingly important role in maintaining ecosystem integrity and halting biodiversity loss caused by anthropogenic activities. However, lack of information on species distributions in transboundary regions and understanding of the threats in these areas impairs conservation. We developed a spatial conservation plan for the transboundary areas between Yunnan province, southwestern China, and neighboring Myanmar, Laos, and Vietnam in the Indo-Burma biodiversity hotspot. To identify priority areas for conservation and restoration, we determined species distribution patterns and recent land-use changes and examined the spatiotemporal dynamics of the connected natural forest, which supports most species. We assessed connectivity with equivalent connected area (ECA), which is the amount of reachable habitat for a species. An ECA incorporates the presence of habitat in a patch and the amount of habitat in other patches within dispersal distance. We analyzed 197,845 locality records from specimen collections and monographs for 21,004 plant and vertebrate species. The region of Yunnan immediately adjacent to the international borders had the highest species richness, with 61% of recorded species and 56% of threatened vertebrates, which suggests high conservation value. Satellite imagery showed the area of natural forest in the border zone declined by 5.2% (13,255 km2) from 1995 to 2018 and monoculture plantations increased 92.4%, shrubland 10.1%, and other cropland 6.2%. The resulting decline in connected natural forest reduced the amount of habitat, especially for forest specialists with limited dispersal abilities. The most severe decline in connectivity was along the Sino-Vietnamese border. Many priority areas straddle international boundaries, indicating demand and potential for establishing transboundary protected areas. Our results illustrate the importance of bi- and multilateral cooperation to protect biodiversity in this region and provide guidance for future conservation planning and practice.  相似文献   

14.
To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of “importance to biodiversity,” perhaps they may now be. We analyzed location biases in PAs globally over historic (pre‐2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected‐area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties.  相似文献   

15.
The European Union has made extensive biodiversity conservation efforts with the Habitats and Birds Directives and with the establishment of the Natura 2000 network of protected areas, one of the largest networks of conservation areas worldwide. We performed a gap analysis of the entire Natura 2000 system plus national protected areas and all terrestrial vertebrates (freshwater fish excluded). We also evaluated the level of connectivity of both systems, providing therefore a first estimate of the functionality of the Natura 2000 system as an effective network of protected areas. Together national protected areas and the Natura 2000 network covered more than one‐third of the European Union. National protected areas did not offer protection to 13 total gap species (i.e., species not covered by any protected area) or to almost 300 partial gap species (i.e., species whose representation target is not met). Together the Natura 2000 network and national protected areas left 1 total gap species and 121 partial gap species unprotected. The terrestrial vertebrates listed in the Habitats and Birds Directives were relatively well covered (especially birds), and overall connectivity was improved considerably by Natura 2000 sites that act as stepping stones between national protected areas. Overall, we found that the Natura 2000 network represents at continental level an important network of protected areas that acts as a good complement to existing national protected areas. However, a number of problems remain that are mainly linked to the criteria used to list the species in the Habitats and Birds Directives. The European Commission initiated in 2014 a process aimed at assessing the importance of the Birds and Habitats Directives for biodiversity conservation. Our results contribute to this assessment and suggest the system is largely effective for terrestrial vertebrates but would benefit from further updating of the species lists and field management.  相似文献   

16.
A major goal of conservation biologists is to identify critical areas for the conservation of biological diversity and then strategically include them in an efficient system of reserves. In general, however, reserve networks have been selected for different objectives, and most countries lack an evaluation of their reserves' ability to represent a percentage of the national diversity. This paper evaluates the effectiveness of a network of reserves to represent the species of mammals in Mexico. The focus of the analyses is on species and site level, evaluating the representation of all terrestrial mammals in the 30 most important reserves. The representation of all species, endemic species, endangered species, and species with restricted distributions in the reserves was assessed and compared. Endemic or endangered species with restricted distributions were expected to be less represented in reserves than were widespread species. The most important reserves for the conservation of mammals were determined with the use of complementarity analyses. Priority sites for the representation of all the species currently absent from the reserve network were then selected. The results have broad applications for conservation. First, 82% of the mammal species from Mexico were represented in the reserve network, which covers a small portion (3.8%) of the country. Second, this percentage is certainly larger as several reserves were not evaluated due to a lack of data. A priority for a national conservation strategy could be to conduct biological surveys in those reserves lacking inventories to evaluate their contribution to conservation. Third, in spite of its demonstrated value, Mexico's reserve network can be improved by designating complementary areas. Additional priority sites, where reserves are required to represent most gap species in the network, were identified. Finally, it is clear that this reserve network has limitations for maintaining biodiversity and ecosystem services at regional scales. A comprehensive conservation strategy has, therefore, to incorporate mechanisms that enhance the value of human-dominated landscapes for the maintenance of biodiversity.  相似文献   

17.
The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected-area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty-eight taxon-specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area-sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.  相似文献   

18.
Ecological mechanisms linking protected areas to surrounding lands.   总被引:4,自引:0,他引:4  
Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.  相似文献   

19.
Abstract: Quantifying the extent to which existing reserves meet conservation objectives and identifying gaps in coverage are vital to developing systematic protected‐area networks. Despite widespread recognition of the Philippines as a global priority for marine conservation, limited work has been undertaken to evaluate the conservation effectiveness of existing marine protected areas (MPAs). Targets for MPA coverage in the Philippines have been specified in the 1998 Fisheries Code legislation, which calls for 15% of coastal municipal waters (within 15 km of the coastline) to be protected within no‐take MPAs, and the Philippine Marine Sanctuary Strategy (2004), which aims to protect 10% of coral reef area in no‐take MPAs by 2020. We used a newly compiled database of nearly 1000 MPAs to measure progress toward these targets. We evaluated conservation effectiveness of MPAs in two ways. First, we determined the degree to which marine bioregions and conservation priority areas are represented within existing MPAs. Second, we assessed the size and spacing patterns of reserves in terms of best‐practice recommendations. We found that the current extent and distribution of MPAs does not adequately represent biodiversity. At present just 0.5% of municipal waters and 2.7–3.4% of coral reef area in the Philippines are protected in no‐take MPAs. Moreover, 85% of no‐take area is in just two sites; 90% of MPAs are <1 km2. Nevertheless, distances between existing MPAs should ensure larval connectivity between them, providing opportunities to develop regional‐scale MPA networks. Despite the considerable success of community‐based approaches to MPA implementation in the Philippines, this strategy will not be sufficient to meet conservation targets, even under a best‐case scenario for future MPA establishment. We recommend that implementation of community‐based MPAs be supplemented by designation of additional large no‐take areas specifically located to address conservation targets.  相似文献   

20.
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号