首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
人工湿地系统在处理低碳氮比污水时,通过外加碳源来提高系统的脱氮效率。碳源是反硝化过程中重要的影响因素,对N_2O释放必然也产生影响。采用芦苇(Phragmites australis)和二球悬铃木(Platanus acerifolia)树叶为碳源的外置碳源型的人工湿地系统,以葡萄糖作为对比碳源,研究有机碳源对脱氮效果及N_2O释放量的影响。结果表明,芦苇和悬铃木树叶作为碳源,在植物分解稳定后,脱氮效果稳定,TN平均去除率分别为90.3%和92.5%,比空白组高出15%左右;单批次试验中,芦苇组和树叶组N_2O平均释放量分别为40.91μg/(m~2·h)和34.16μg/(m~2·h),略高于葡萄糖组的6.20μg/(m~2·h),但显著小于空白组的127.45μg/(m~2·h),累积释放量与TN去除量的比值小于0.1%且显著小于空白组;芦苇和树叶组基质微生物的反硝化作用强度及PLFAs总量均显著高于空白组,细菌PLFAs占PLFAs总量的比例均接近50%,而真菌PLFAs仅大于7%,细菌为优势种群。因此,向处理低C/N污水的人工湿地系统补充适宜的植物碳源材料,可以有效提高脱氮效率并降低N_2O释放。  相似文献   

2.
选取1#钢渣与铁尾矿组合、2#粉煤灰与铁尾矿组合2种填充方式填充成基质柱,进行垂直流人工湿地模拟柱净化污水实验,测定其对生活污水中TP、TN及COD的去除效率.实验结果显示,2个模拟柱对TP的去除效果都比较明显,最高去除率均能达到90%以上.2个模拟柱除氮效果均不太理想.1#柱对COD的去除效果良好且最稳定,2#柱处理效果略差.水力停留时间为5d时,2个模拟柱对污染物的去除效果基本达到稳定.3周内,随着实验周期的延长,模拟柱系统逐渐稳定.  相似文献   

3.
人工湿地对二级出水中TN、TP去除效果的季节性研究   总被引:3,自引:3,他引:0  
研究了垂直流和表面流两种人工湿地系统在水力停留时间为2 d条件下,在不同季节对二级出水中TN、TP的去除效果。结果显示,垂直流湿地系统对TN、TP的去除效果优于表面流湿地系统。两种类型的人工湿地对TN的去除效果随季节的变化而波动,夏秋季节去除率最高,春季次之,冬季去除效果最差;垂直流人工湿地系统对TP的去除效果随季节的变化趋势与TN去除率的变化相同,而表面流湿地系统对TP的去除效果在春夏秋季变化不大,冬季的平均去除率仅有16.5%。分析认为,人工湿地应用于二级出水的深度处理,对于满足观赏性景观环境用水(尤其是观赏性河道和湖泊类)的水质指标是可行的。  相似文献   

4.
针对现有人工湿地硝化效能低、占地面积大的问题,研究污水处理厂尾水人工湿地高效硝化深度处理技术,采用序批式深床人工湿地反应器(DSCW),考察进水方式及其运行工况对硝化效能的影响。结果表明,进水方式、进水时间和闲置时间对湿地硝化效能影响显著。进水方式采用"连续进水-间歇出水"较连续进出水运行工况NH_4~+-N去除率高39.69%。连续进水时间为5.5 h、7.5 h、11.5 h时,NH_4~+-N去除率分别为81.82%、88.12%、89.91%;闲置时间为0、2 h、4 h时,NH_4~+-N去除率分别为88.12%、94.46%、92.60%。反应器在水温(20±3)℃、负荷35.56 g NH_4~+-N/(m2·d)、连续进水7.5 h-间歇出水0.5 h-排空闲置2 h运行工况下,出水NH_4~+-N为0.91 mg/L,去除率为94.46%,系统NH_4~+-N去除效能大幅提高。  相似文献   

5.
用下行流人工湿地处理生活污水,分析了系统对CODCr、TP、TN的处理效果,并将有无植物2种系统对污染物的去除效果进行对比.研究结果表明,下行流人工湿地对有机物、氮、磷都有很高的去除率;进水中TN和TP的浓度变化对出水中氮磷含量影响不大,系统对氮磷有一定的抗冲击能力;植物在污染物去除过程中起了重要的作用.  相似文献   

6.
人工湿地中指示和病原微生物分布与衰减研究   总被引:3,自引:0,他引:3  
采用多管发酵法和倾注平板法研究总大肠菌群(Total col-ifotms,TC)、粪大肠菌群(Fecal coliforms,FC)、粪链球菌(Fecal strepto-cocci,FS)、大肠杆菌(Escherichia coli,EC)、产气荚膜梭菌(Clostridiumperfringens,CP)和沙门氏菌(Salmonella spp.,SM)6种指示微生物和病原微生物在人工湿地中的分布、去除及衰减情况.结果表明,人工湿地对粪大肠菌群、人肠杆菌和总大肠菌群的去除效果最好,去除率分别为90.0%、84.6%和83.0%;对沙门氏菌和产气荚膜梭菌的去除效果较差,去除率分别为51.9%和35.7%;出水中粪链球菌的数量高于进水.基质中指示微生物和病原微生物数量比单元水中多2~4个数量级.指示微生物和病原微生物在污水中的衰减速率明显高于基质中,产气荚膜梭菌在污水和基质中的衰减速率最低,分别为0.053lgd-1和0.038 lgd-1.研究表明人工湿地对指示微生物的去除效果并不能完全反映对病原微生物的去除情况,结果可为人工湿地的环境卫生安全评价提供依据.  相似文献   

7.
为研究不同植物及组合(美人蕉+黄菖蒲、花叶芦竹、黄菖蒲、旱伞草)与不同填料(陶粒、沸石、改性沸石、改性钢渣)对系统处理分散性生活污水效能的影响,建立了8种不同配置的潜流式人工湿地中试系统。结果表明,各湿地对COD均具有较好的去除效果(去除率大于70%)。旱伞草、黄菖蒲+美人蕉、黄菖蒲和花叶芦竹四植物系统对TN的去除率均呈先降低后上升的趋势,最终平均去除率分别为57.8%、51.1%、50.4%和45.5%。改性沸石、沸石、陶粒和改性钢渣填料系统对TN平均去除率分别为96.4%、83.7%、34.6%和26.6%。各植物系统对TP的去除效果差异不显著,其中旱伞草系统TP平均去除负荷最大(0.63 g/(d·m2))。各填料对TP的去除效果从大到小依次为改性钢渣、改性沸石、陶粒、沸石,改性钢渣和改性沸石对TP的去除能力显著高于陶粒和沸石,平均去除率达86.3%和78.8%。研究表明,分别采用旱伞草和改性沸石为湿地植物和填料具有较好的应用前景。  相似文献   

8.
为研究DEHP降解菌对反硝化生物滤池启动和性能的影响,采用两座上向流反硝化生物滤池进行对比试验。两座反硝化生物滤池进水均投加120μg/L的DEHP,一座反硝化生物滤池(1~#滤池)按照1∶1000(V菌液∶V进水)仅在挂膜阶段投加DEHP降解菌菌液,另一座反硝化生物滤池(0~#滤池)不投加DEHP降解菌菌液作为空白对照。对比试验期间对反硝化生物滤池在1.5 m/h的滤速下运行,通过29 d的对比试验,结果发现,DEHP降解菌使反硝化生物滤池的挂膜时间由15 d变为9 d,加快了40%,稳定阶段0~#滤池和1~#滤池的COD去除率分别为90.45%和95.55%,硝氮去除率分别为69.35%和76.19%,DEHP降解菌提升了滤池对COD和硝氮的去除能力,但对出水亚氮的浓度无明显影响,出水亚氮浓度几乎为0。反硝化生物滤池对DEHP的去除也有明显的效果,0~#滤池和1~#滤池在稳定阶段的DEHP去除率分别为74.77%和86.66%,DEHP降解菌也提升了反硝化生物滤池对DEHP的去除率。另外,在反硝化滤池内部,COD、硝氮、DEHP的去除主要集中在进水端0~0.4 m内。0~#滤池的亚氮积累率随滤池的增高而降低,但1~#滤池的亚氮积累率随滤层高度的增加呈现先升高后降低的趋势。  相似文献   

9.
湿地植物根际微生物处理生活污水的模型规模研究   总被引:3,自引:0,他引:3  
在人工湿地模型中,研究了人为增加湿地植物根际微生物对生活污水中COD的降解效果:将2株从湿地分离的根际微生物扩增培养(分别用于模型1与模型2),与一定比例的生活污水混合后注入到湿地模型中,在停留12,24,36,48 h时分别测定污水中COD的去除率.结果表明,加菌模型对COD的去除率显著高于空白模型(P<0.05),且随着时间的延长,二者的差异性越大,至48 h时,空白模型和2个加菌模型(模型1和模型2)对自然污水COD的去除率分别为50.6%,73.0%,75.3%,对灭菌污水COD的去除率分别为52.2%,76.3%,80.1%.说明向人工湿地中添加植物根际微生物将大大提高湿地对生活污水中COD的去除率,具有进一步开发的价值.  相似文献   

10.
为了揭示反硝化菌强化潜流湿地的污水处理厂尾水脱氮效果及机理,以砾石、红砖碎块、钢渣、陶粒、土壤为湿地填料,茭白、梭鱼草、黑麦草、红叶石楠为湿地植物,构建了两套湿地系统,其中一套投加菌剂,另一套作为对照组,使用双总体t检验方法分析了投加反硝化细菌B8(Pseudomonas putida)菌液于水平潜流湿地系统的操作与生物强化湿地脱氮程度之间的相互关系。结果表明,将反硝化菌(B8)菌液连续14 d投加于水平潜流湿地后,在强化潜流湿地运行的58 d内,其NH_4~+-N、NO_2~--N和TN平均去除率分别为65.3%、94.2%和71.5%;而未投菌的潜流湿地的NH_4~+-N、NO_2~--N和TN平均去除率分别为28.2%、74.7%和43.1%,加入菌剂使潜流湿地氮素去除能力大幅提高。双总体t检验方法分析表明,在停止投菌运行的41 d内,接种B8细菌的湿地系统的总氮去除率显著高于未投菌的湿地系统(p0.05);但在停止投菌运行的58 d内,投菌湿地和未投菌湿地脱氮效果的差异不显著(p0.05),因此确定B8强化水平潜流湿地系统的投菌周期为58 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号