首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the rice bran oil (RBO) has been converted into methyl ester with an aid of transesterification reaction. Chemically, transesterification means conversion of triglyceride molecule or a complex fatty acid into alcohol and ester by removing the glycerin and neutralizing the free fatty acids. The B20 blend samples [80% diesel + 20% biodiesel] were prepared for each methyl ester obtained from RBO and then the cerium oxide (CeO2) nanoparticles were added to the each B20 blend samples at a dosage of 50 ppm and 100 ppm with an aid of ultrasonicator. Moreover, in the absence of any engine modifications, the performance and emission characteristics of those blend samples have been investigated from the experimentally measured values such as density, viscosity, cloud point, pour point, and calorific value while the engine performance was also analyzed through the parameters like exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), exhaust emission of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx). The experimental results reveal that the use of CeO2 blended biodiesel in diesel engine has exhibited good improvement in performance characteristic and reduction in exhaust emissions.  相似文献   

2.
This study details the effect of the Di-Methyl-Ether(DME) as a cetane improver on neat cashew nut shell biodiesel (CBD100) to assess the emission and performance engine characteristics. Four fuels, namely, diesel, biodiesel (Cashew nut shell Methyl Ester), a blend of CBD100-10% and 20% by volume of DME (CBD90DME10and CBD80DME20) are prepared and tested on a stationary research diesel engine. The experimental parameters for CBD80DME20 showed a 1.6% increase in thermal efficiency thereby reducing 4.1% of fuel consumption than the neat biodiesel at peak conditions. Experimental result exposed that 20% of DME reduces 3.4% CO, 4.2% HC and 8.8% NOx and 8.4% smoke emissions of CBD100. Based on the outcome of this work, it is clear that CBD80DME20 shall be employed as a substitute fuel for diesel engine.

Abbreviations: CI: Compression ignition; CBD100: Cashew nut shell Bio-diesel; DME: Di-methyl ether; CO: Carbon monoxide; BTE: Brake thermal efficiency; BSFC: Brake specific fuel consumption; CBD100: 100% Biodiesel; CBD90DME10: 90% biodiesel + 10% di-methyl-ether; CBD80DME20: 80% biodiesel + 20% di-methyl-ether; HC: Hydrocarbon; NOx: Oxides of nitrogen.  相似文献   


3.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   

4.
Biodiesels have come up as a very strong alternative for diesel fuel. Biodiesels such as Jatropha Oil Methyl Ester (JOME) are comparable in performance with that of the diesel engine. The thermal efficiency of engines fuelled with biodiesels was found lower than conventional diesel fuel but due to the bio-origin, the emission characteristics are much better. However, biodiesel increases the NOx emissions as these are rich in oxygen, hence nanoparticles are used in this experiment to curb the high temperatures and reduce the NOx formation. The experiment on naturally aspired diesel engine was conducted with four prepared test fuels other than neat diesel and neat biodiesel. The 50 and 150 of alumina nanoparticles were added separately to the pure diesel and pure Jatropha biodiesel to form the nano emulsions using ultrasonicator. The properties of nanoemulsion were evaluated using dynamic light scattering technique using zetasizer. The performance and emission characteristics of multi-cylinder diesel engine with these nanoemulsions were compared with that of neat fuels. The results showed that using nanoparticles with diesel and biodiesel can contribute in a more efficient, economical, and eco-friendly engine operation.  相似文献   

5.
The present experimental work investigates the use of ethyne gas in biodiesel-fueled diesel engine at different flow rate of 1, 2, and 3 L/min and is compared with diesel operation. This work is aimed to examine the outcome of ethyne gas by dual-fuel operation on emission characteristics of neat biodiesel-fueled stationary diesel engine. The oil derived from mustard seeds are employed as a source for biodiesel. The work was carried out at 2100 rpm (speed) and at an optimal compression ratio of 17. Based on the outcome of this investigation, the maximum reduction in hydrocarbon (25.1%), carbon monoxide (17.24%), and smoke emission (24.8%) was observed for biodiesel–ethyne at 3 L/min than the neat biodiesel. However, NOx emissions were found to be 15.8% higher for ethyne–biodiesel fueling at 3 L/min owing to increase in combustion gas temperature than neat biodiesel.  相似文献   

6.
This work examines the effect of butanol (higher alcohol) on the emission pattern of neat neem oil biodiesel (NBD100) fueled diesel engine. Single-cylinder, 4-stroke, research diesel engine was employed to conduct the trial. Blends comprising the mixture of biodiesel and higher alcohol were prepared by employing an ultrasonic agitator. Four test fuels such as neat neem oil biodiesel, diesel, and two blends of higher alcohol/neem oil biodiesel: 10% and 20% (by volume). Experimental result showed that increasing alcohol content to biodiesel brought down the various emissions such as Smoke, NOx, HC, and CO by 6.8%, 10.4%, 8.6%, and 5.9%, respectively, at all loads. It was also concluded from the trail that a 20% higher alcohol/neem oil biodiesel blends show the promising signs in reducing all the emissions associated with biodiesel fuelled diesel engine.  相似文献   

7.
Biodiesel is a promising fuel for compression ignition engines instead of diesel fuel. Due to the depletion of diesel fuel, an alternative fuel can be used in an engine. The experiments were conducted on a four-stroke, single cylinder CI engine. In this present investigation, an attempt has been made to study the influence of injection pressure (IP) and injection timing (IT) on the performance and emission characteristics of diesel engines by using mixed biodiesel (Thevetia peruviana, Jatropha, Pongamia, and Azadirachta indica). The injection pressure is varied from 200 to 230 bar and the injection timing is varied from 23 to 29° bTDC at an increment of 10 bar and 2° bTDC, respectively, and the results were compared with diesel. From this study, the results showed that the brake thermal efficiency (BTE) was increased by 2.4% with an increase in injection pressure and 1.5% with an increase in the injection timing for the maximum load, but lesser than diesel. Furthermore, a reduction of 5.08% of brake specific fuel consumption (BSFC) has been noticed for the rise in IP and IT with loads but higher than diesel. The reduction was 34.17%, 53.85%, and 29.7% and 29.17%, 53.85%, and 21.95% of hydrocarbons (HC), carbon monoxide (CO), and smoke emissions, respectively, at 230 bar injection pressure and at 27° bTDC injection timing. Also, a significant increase in nitrogen oxides (NOx) and carbon dioxide (CO2) emissions at the maximum load was observed by increasing the injection pressure and injection timing.  相似文献   

8.
In this study, the top surfaces of piston and valves of a four-strokes and direct-injection diesel engine have been coated—with no change in the compression ratio—with a 100 μm of NiCrAl lining layer via plasma spray method and this layer has later been coated with main coating material with a mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3 (400 μm). Then, after the engine-coating process, ultra-low sulfur diesel (ULSD) as base fuels and its blend with used frying cottonseed oil derived biodiesel in proportion of 20%, volumetrically, have been tested in the coated engine and data of combustion and performance characteristics on full load and at different speeds have been noted. The results, which were compared with those obtained by uncoated-engine operation, showed that thermal efficiency increased, and engine noise reduced. Cylinder gas pressure values obtained from the diesel engine which has been coated with thermal barriers have been found to be somewhat higher than those of the uncoated-engine. Also, maximum pressure values measured in both engines and under the same experimental conditions through the use of test fuel have been obtained after TDC. Moreover, heat release rate and heat release have occurred earlier in the coated-engine. NOx emissions were increased while CO and HC emissions were remained almost the same with a little bit decrease.  相似文献   

9.
This work aimed to prove the effects of adding different proportions of ethanol with diesel (DE) and ethanol–water mixture with diesel (DEW) in a single-cylinder diesel engine on the performance, emissions, and combustion parameters. The blends were stabilized by tetra methyl ammonium bromide (TMAB) as the additive. The study was conducted at two operating conditions initially on a normal diesel engine and in the second case the engine piston, valves, and cylinder head coated with zirconia (ZrO2) alumina (Al2O3). The results showed that the addition of 10% ethanol with diesel performed almost equivalent to neat diesel with 29.2% BTE and a 17.7% decrease in smoke and an 11.4% increase in NOx emission at peak load compared to that of the base fuel. Modified engines with thermal barrier coating (TBC) performed superior to normal engines with 4% and 5.5% increase in BTE, respectively, for DE- and DEW-type fuels with reduced exhaust emissions. A 5% addition of water with diesel–ethanol blends favors a higher proportion of ethanol to be employed in diesel engines.  相似文献   

10.
Increased NOx emission from usage of biodiesel is a burning issue to be dealt with. Many techniques have been adopted to reduce NOx emissions from diesel engines. The present experimental study deals with the analysis of performance and emission characteristics of Cotton Seed oil biodiesel with the addition of natural antioxidant extract of clove. FTIR analysis characterized the antioxidant by the presence of hydroxyl groups denoted by the corresponding wave number. The oxidation stability of the test samples was determined in terms of induction period by means of Rancimat test. The induction periods of the test fuel samples B100, B20, B20+CL1000, and B20+CL2000 were found to be 2.20 h, 2.73 h, 10.19 h, and 11.12 h, respectively. Thus, the addition of Clove antioxidant increased the oxidation stability of the biodiesel. Results show that the addition of antioxidant to biodiesel blend has increased the Brake Thermal Efficiency to a maximum of 4.71% and decreased the Brake Specific Fuel Consumption to a maximum of 6.25% at full-load conditions compared to Cotton Seed biodiesel blend. The addition of Clove extract antioxidant at a concentration of 1000 ppm and 2000 ppm decreases the NOx emission by 23.03% and 26.7%, respectively, at full-load conditions. However, CO emissions increased by 1.12% and 4.49% with the addition of CL1000 and CL2000 to B20, respectively. Similarly, HC emissions increased by 4.19% and 7.35% by the addition of CL1000 and CL2000 to B20, respectively. The increases in smoke with the addition of CL1000 and CL2000 to B20 were 42.48% and 47.71%, respectively.  相似文献   

11.
Worldwide energy demand has been growing steadily during the past five decades and most experts believe that this trend will continue to rise. The amount of emitted harmful emission gases increases in parallel with increasing energy consumption. This increase has forced many countries to take various precautions, and various restrictions on emitted emissions have been carried. In this study, effects of addition of oxygen containing nanoparticle additives to biodiesel on fuel properties and effects on diesel engine performance and exhaust emissions were investigated. Two different nanoparticle additives, namely MgO and SiO2, were added to biodiesel at the addition dosage of 25 and 50 ppm. Fuel properties, engine performance, and exhaust emission characteristics of obtained modified fuels were examined. As a result of this study, engine emission values NOx and CO were decreased and engine performance values slightly increased with the addition of nanoparticle additives.  相似文献   

12.
An attempt has been made to produce stable water–diesel emulsion with optimal formulation and process parameters and to evaluate the performance and emission characteristics of diesel engine using this stable water–diesel emulsion. A total of 54 samples were prepared with varying water/diesel ratio, surfactant amount and stirring speed and water separation was recorded after 24 and 48 hr of emulsification. The recorded data were used in artificial neural network (ANN)-particle swarm optimization (PSO) technique to find the optimal parameters to produce water–diesel emulsion for engine testing. The predicted optimal parameters were found as 20% water to diesel ratio, 0.9% surfactant and 2200 rpm of stirrer for a water separation of 14.33% in one day with a variation of 6.54% against the actual value of water separation. Water–diesel emulsion fuel exhibited similar fuel properties as base fuel. The peak cylinder gas pressure, peak pressure rise rate and peak heat release rate for water–diesel were found higher as compared to diesel at medium to full engine loads. The improved air-fuel mixing in water–diesel emulsion enhanced brake thermal efficiency (BTE) of engine. The absorption of heat by water droplets present in water–diesel emulsion led to reduced exhaust gas temperature (EGT). With water–diesel emulsion fuel, the mean carbon monoxide (CO), unburned hydrocarbon and oxides of nitrogen (NOx) emissions reduced by 8.80, 39.60, and 26.11%, respectively as compared to diesel.  相似文献   

13.
This study attempts to use plentiful available high oil content (67% of Nahar seed kernel) non-edible feedstock as a source for powering diesel engine. Various performance and emission characteristics of prepared Nahar oil–diesel blends (5%, 10%, 20%, 30%, and 40%) are analyzed in a single cylinder direct injection diesel engine at different load spectrum, in order to judge the optimum blend, which can be efficiently used in a diesel engine. 10% blending of Nahar oil with diesel fuel has shown a reduction in hydrocarbon and carbon monoxide emission by 8.64% and 8.34%, respectively. With the increase in blend concentration, the nitrogen oxide emission decreased considerably and smoke emission increased slightly. Further pressure crank angle and heat release rate analysis of 10% blending of Nahar oil with diesel confirms its smooth combustion inside the engine combustion chamber.  相似文献   

14.
The basic objective of the research work was to study the effect of various blends of Mimusops elangi methyl ester (MEME) on engine performance, combustion, and emission characteristics of a single-cylinder direct-injection compression ignition engine, running at constant speed. The raw oil was extracted from Mimusops elangi seeds through mechanical crusher. The neat MEME was obtained through transesterification process and mixed with diesel in versatile proportions of 10% of MEME (10% MEME–90% Diesel), 20% of MEME(20% MEME–80% Diesel), 30% of MEME(30% MEME–70% Diesel), 40% of MEME(40% MEME–60% Diesel), and 100% MEME on a volume basis. Their properties were validated based on ASTM standards. Experimental investigation revealed that the 20% blend resulted in 4.18%, 5.12% more prominent performance characteristics of brake thermal efficiency, brake specific energy consumption, and superior emission diminution of 5.26% of HC, 16.6% of CO, 6.2% of smoke when compared with base diesel fuel, despite marginal penalty of 5.26% of carbon dioxide and 4.8% of oxides of nitrogen emission at full load condition. Characteristics of combustion parameters like pressure inside the cylinder and rate of the heat released were superior for 20% blend of MEME at the peak load condition.  相似文献   

15.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   

16.
针对四川省在用车辆尾气污染情况开展了详细的调查研究,结果表明四川省机动车尾气污染中约71.3%的CO、68.6%的HC、95.3%的NOx和99.2%的PM均来自于汽车尾气。同时分析得出简易瞬态工况法是在用车辆尾气排放控制的有效控制方法,有利于四川省大气环境质量的改善,经预测采用简易瞬态工况法以及简易瞬态工况法排放标准后可使四川省在用点燃式轻型车尾气排放的CO削减约28.76%~50.48%,HC+NOx削减约1.53%~23.24%。  相似文献   

17.
This research work investigates the engine performances, combustion characteristics, and emission of exhaust gases of variable compression ratio engine fuelled with cottonseed oil methyl ester (COME) and diesel at different blends. The analysis showed that heat release rate and cylinder pressure is higher for diesel than COME blends. Higher BTE is obtained at the maximum load condition. The higher BTE and lower SFC are obtained for blend B15 as 42.17% and 0.2 kg/kW-hr at brake mean effective pressure (BMEP) of 4.64 bar. Also it is found that the peak cylinder gas pressure and combustion duration increases when the BMEP increases. At the BMEP of 3.51 bar, higher HRR is observed as 18.12 J/deg. Increase in HRR is obtained as 6.07% for B30 at BMEP of 4.64 bar when compared to diesel. Ignition delay decreased by 13.16% for B100, by the increment of blend proportions when compared to diesel, at BMEP of 4.64 bar. Lower smoke, HC and CO emissions are observed when increasing the blend proportions, whereas the nitric oxide emissions increases due to the better combustion resulted in higher temperatures. At BMEP of 4.64 bar, the CO emissions are reduced to 25.24% for neat biodiesel when compared with the diesel.  相似文献   

18.
Biofuel blends produced from Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) oil were evaluated for their combustion properties. Two kinds of blends (regular diesel with Jatropha and Karanja oil) were prepared at 20% volume to the diesel and tested as alternative fuels in single cylinder (vertical), water-cooled, direct injection diesel engine at the rated speed of 1500 rpm. The performance of the engine in terms of thermal efficiency at full load for diesel was 30%. For Jatropha and Karanja biodiesel blends, the thermal efficiencies were 29.0% and 28.6%, respectively. The maximum cylinder pressure and ignition delay for biodiesel fuel blends are very close to that of regular diesel. Prolonged combustion was observed for Karanja oil blend in comparison to Jatropha oil blend. The combustion pattern also reveals the slow burning characteristics of vegetable oils and this study indicates that the blended biofuels have combustion characteristics that are similar to regular diesel fuels.  相似文献   

19.
Singapore has pledged to attain 7–11% Business-As-Usual carbon emissions reduction by 2020. About 19% of CO2 contribution stemmed from road transport in 2005. Commercial vehicles, which uses mainly diesel, consumed 695 million litres diesel in 2012. An estimated 115,585 tonnes or 127 million litres cooking oils (derived from seeds/fruits) were consumed in 2010, in which the bulk of used cooking oil is re-incorporated into the food preparation process while only a small amount is being recycled into biodiesel or disposed into the sewerage. Nevertheless, the present research reveals that biodiesel derived from spent cooking oil has potential to be a viable fuel supplement. Surveys were carried out involving three market segments – suppliers, processors and end-users – to identify the barriers and obstacles in mass production of biodiesel. A key enabler of biodiesel as a fuel supplement towards a greener environment lies in government mandate/policies in promoting greater biodiesel usage.  相似文献   

20.
以喷射鼓泡吸收器为净化装置,研究了废钻井液脱除柴油机废气中有害物质的机理,考察了气体喷射速度、吸收剂浓度、吸收剂液高及柴油机工况对废气脱除效果的影响,得出了适宜的操作参数。实验结果表明,废钻井液吸收剂具有表面活性和胶体吸附性,可以全面清除柴油机废气中的有害物质。其中碳烟脱除率可达到68%。HC、SO2和NOx的脱除率可分别达到80%、95%和90%以上,排烟黑度低于1.0Rb。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号