首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT(50) values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

2.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT50 values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

3.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

4.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

5.
Tsui MT  Chu LM 《Chemosphere》2003,52(7):1189-1197
Glyphosate-based herbicides (e.g. Roundup) are extensively used in the aquatic environment, but there is a paucity of data on the toxicity of the formulated products and the influences by environmental factors. In this study, the acute toxicity of technical-grade glyphosate acid, isopropylamine (IPA) salt of glyphosate, Roundup and its surfactant polyoxyethylene amine (POEA) to Microtox bacterium (Vibrio fischeri), microalgae (Selenastrum capricornutum and Skeletonema costatum), protozoa (Tetrahymena pyriformis and Euplotes vannus) and crustaceans (Ceriodaphnia dubia and Acartia tonsa) was examined and the relative toxicity contributions of POEA to Roundup were calculated. The effects of four environmental factors (temperature, pH, suspended sediment and algal food concentrations) on the acute toxicity of Roundup to C. dubia were also examined. Generally, the toxicity order of the chemicals was: POEA>Roundup>glyphosate acid>IPA salt of glyphosate, while the toxicity of glyphosate acid was mainly due to its high acidity. Microtox bacterium and protozoa had similar sensitivities towards Roundup toxicity (i.e. IC50 from 23.5 to 29.5 mg AE/l). In contrast, microalgae and crustaceans were 4-5 folds more sensitive to Roundup toxicity than bacteria and protozoa. Except photosynthetic microalgae, POEA accounted for more than 86% of Roundup toxicity and the toxicity contribution of POEA was shown to be species-dependent. Increase in pH (6-9) and increase of suspended sediment concentration (0-200 mg/l) significantly increased the toxicity of Roundup to C. dubia, but there were no significant effects due to temperature change and food addition.  相似文献   

6.
Peixoto F 《Chemosphere》2005,61(8):1115-1122
The potential toxicity of the herbicide Roundup and its fundamental substance (glyphosate) was tested in bioenergetic functions of isolated rat liver mitochondria. Roundup stimulates succinate-supported respiration twice, with simultaneous collapse of transmembrane electrical potential, while glyphosate used in the same concentrations does not induce any significant effect. Additionally, Roundup depresses state 3 respiration by about 40%, at 15 mM, whereas uncoupled respiration in the presence of FCCP is depressed by about 50%. Depression of uncoupled respiratory activity is mediated through partial inhibition of mitochondrial complexes II and III, but not of complex IV. The phosphorylative system was affected by both a direct and an indirect effect on the F0F1 ATPase activity. The addition of uncoupled concentrations of Roundup to Ca2+-loaded mitochondria treated with Ruthenium Red resulted in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Therefore, the uncoupling of oxidative phosphorylation is also related to the non-specific membrane permeabilization induced by Roundup. Glyphosate alone does not show any relevant effect on the mitochondrial bioenergetics, in opposition to Roundup formulation products. The differences in the toxicity observed could be either attributed to some products of Roundup or to a synergic effect of glyphosate and formulation products. Bearing in mind that mitochondria is provided with a variety of bioenergetic functions mandatory for the regulation of intracellular aerobic energy production and electrolyte homeostasis, these results question the safety of Roundup on animal health.  相似文献   

7.
This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.  相似文献   

8.
The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L−1 pure glyphosate and its formulation. Bioaccumulation was determined using 14C labeled glyphosate. The bioaccumulation factor (BCF) varied between 1.4 and 5.9 for the different concentrations, and was higher than estimated from log Pow. Glyphosate and its surfactant POEA caused elevation of biotransformation enzyme soluble glutathione S-transferase at non-toxic concentrations. Membrane bound glutathione S-transferase activity was significantly elevated in Roundup Ultra exposed worms, compared to treatment with equal glyphosate concentrations, but did not significantly differ from the control. Antioxidant enzyme superoxide dismutase was significantly increased by glyphosate but in particular by Roundup Ultra exposure indicating oxidative stress. The results show that the formulation Roundup Ultra is of more ecotoxicological relevance than the glyphosate itself.  相似文献   

9.
Effect of glyphosate on the microbial activity of two Brazilian soils   总被引:15,自引:0,他引:15  
Glyphosate [N-(phosphonomethyl)-glycine] is a broad-spectrum, non-selective, post-emergence herbicide that is widely used in agricultural. We studied, in vitro, changes in the microbial activity of typical Hapludult and Hapludox Brazilian soils, with and without applied glyphosate. Glyphosate was applied at a rate of 2.16 mg glyphosate kg(-1) of soil and microbial activity was measured by soil respiration (evolution of CO(2)) and fluorescein diacetate (FDA) hydrolysis over a period of 32 days. We found an increase of 10-15% in the CO(2) evolved and a 9-19% increase in FDA hydrolyses in the presence of glyphosate compared with the same type of soil which had never received glyphosate. Soil which had been exposed to glyphosate for several years had the strongest response in microbial activity. Most probable number (MPN) counts showed that after 32 days incubation the number of actinomycetes and fungi had increased while the number of bacteria showed a slight reduction. After the incubation period, high pressure liquid chromatography (HPLC) detected the glyphosate metabolite aminomethyl phosphonic acid (AMPA), indicating glyphosate degradation by soil microorganisms.  相似文献   

10.
The effects of a triazine herbicide, simetryn, on freshwater phyto- and zooplankton communities and water chemistry were investigated using outdoor experimental ponds. Simetryn was applied at a concentration of 0.1 or 1.0 mg l(-1) 18 days after the start of the experiment. Simetryn treatments reduced pH, dissolved oxygen concentration, chlorophyll a concentration and photosynthetic rate in the pond water, whereas they increased the dissolved nutrient concentration. In the phytoplankton community Volvocales and Cryptophyceae were clearly reduced by the herbicide application. In the 0.1 mg l(-1) simetryn-treated ponds, photosynthetic rate of the phytoplankton community recovered slightly about two weeks after the treatment, which coincided with recovery of centric diatoms and Cryptophyceae, whereas it was completely suppressed until the end of the experiment in the 1.0 mg l(-1) simetryn-treated ponds. The decrease in zooplankton density in the treated ponds was not due to the direct toxic effects of simetryn but to indirect effects resulting from reduced algal productivity which in turn reduced the food supply.  相似文献   

11.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4?±?0.1 mg l?1 of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a?=?2.04 μg l?1; turbidity?=?2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a?=?50.3 μg l?1; turbidity?=?16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.  相似文献   

12.
Fluorene, an energy related polynuclear aromatic hydrocarbon, was applied to several experimental pond ecosystems to effect concentrations of 0.12, 0.5, 2.0, 5.0, and 10.0 mg/L. Water, benthic sediment, and rooted macrophytes were monitored for fluorene residues for 56 days after application. Most of the fluorene at concentrations greater than its water solubility appeared to sublime from the surface of the ponds. The rate of disappearance of fluorene from the water decreased as the application rate increased. This reduction was linked to high concentrations and a flux of fluorene from benthic sediments, macrophytes, and pond surfaces to water columns. Several parameters of photosynthetic primary production were statistically linked to the accelerated disappearance of fluorene from the water.  相似文献   

13.
A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup®, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and β-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P > 0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l−1 of glyphosate).

The effects of Roundup® on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l−1 of glyphosate. In samples containing 50 and 100 mg l−1 of glyphosate a significant (P < 0.05) increase in Aeromonas spp. counts and accompanying flora was observed.

The acute toxicity of Roundup® and of Roundup® diluted with Albufera lake water to Microtox® luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l−1 and 64.0 mg l−1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.  相似文献   


14.
Effects of the bipyridylium herbicide diquat and tank-mix adjuvant Agral((R))90 were investigated on various life history traits of the freshwater pulmonate snail Lymnaea stagnalis. Trait expression was measured in simple laboratory bioassays on small size groups of snails, and under more complex, indoor microcosm conditions, on larger groups of snails. Microcosms were provided with sediment, plants, and fish, thus allowing a more complex level of intra and inter-specific interactions to develop. Treatments were performed with substances alone or in mixture, at concentrations ranging from 4.4 to 222.2mugl(-1) for diquat, and from 10 to 500mugl(-1) for Agral 90, under a fixed ratio design. Adult growth was negatively affected by diquat and its mixture with Agral 90 both at the highest concentrations (222.2 and 500mugl(-1), respectively). Fecundity expressed differently in bioassays and microcosms, but no effect of the chemicals could be observed on this trait. Progeny development was impaired by 222.2mugl(-1) diquat and its mixture with 500mugl(-1) Agral 90, as reflected by longer development time and reduced hatching rate of clutches laid by the exposed animals, as compared to the controls. Hatching data suggested that diquat bioavailability was lower in microcosms than under bioassay conditions. Consistently, chemical analysis showed that diquat disappeared more rapidly from the water in microcosms than in bioassays. Moreover, the differential expression of several life history traits under bioassays and microcosms conditions was probably also influenced by the level of intraspecific interaction, which differed among the systems. When significant, the effect of diquat was attenuated by the presence of Agral 90, indicating antagonistic interaction between the two substances. Such a deviation from additivity was partly validated statistically.  相似文献   

15.
Wong PK 《Chemosphere》2000,41(1-2):177-182
The effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis by a freshwater green alga, Scenedesmus quadricauda Berb 614, were determined. These herbicides are the most often used in Hong Kong. Within the concentration range 0.02-200 mg/l, paraquat was more toxic than glyphosate and 2,4-D to the growth, photosynthesis and chlorophyll-a synthesis. The presence of 0.02, 0.2 or 2 mg/l of 2,4-D was not toxic to the alga. Algal growth, photosynthesis and chlorophyll-a synthesis were stimulated by the presence of low concentrations (0.02 or 0.2 and 0.02 mg/l, respectively) of 2,4-D and glyphosate. The presence of 0.02 or 0.2 mg/l of paraquat, 2 mg/l of glyphosate or 20 mg/l of 2,4-D was significantly inhibitory to the three test parameters, whereas the presence of 2 or more mg/l of paraquat, 20 or more mg/l of glyphosate or 200 mg/l of 2,4-D completely inhibited algal growth, photosynthesis and chlorophyll-a synthesis. The use of the alga as a bio-indicator of herbicide contamination in freshwater environment was discussed.  相似文献   

16.
The acute toxicity of permethrin, resmethrin, and cypermethrin to four species of aquatic non-target invertebrate organisms, found in estuarine and freshwater ecosystems, was evaluated. Artemia franciscana and Brachionus plicatilis larvae, as estuarine organisms, and Brachionus calyciflorus and Thamnocephalus platyurus larvae, as freshwater organisms, were exposed for 24 h to concentrations of these pyrethroids, and the LC(50) values were compared. The freshwater organisms were more sensitive to these pyrethroids than estuarine organisms tested. A. franciscana larvae were more tolerant organisms than B. plicatilis larvae. The freshwater organisms tested have demonstrated to be a good alternative to the standard acute toxicity assays using Daphnia, although Brachionus plycatilis larvae were more sensitive to these pyrethroid insecticides than T. platyurus. Analysis of 24 h LC(50) values of these pyrethroids, determined by static bioassays, revealed that the rank order of toxicity was: permethrin相似文献   

17.
Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.  相似文献   

18.
Shao D  Liang P  Kang Y  Wang H  Cheng Z  Wu S  Shi J  Lo SC  Wang W  Wong MH 《Chemosphere》2011,83(4):443-448
This study investigated total mercury (THg) and methylmercury (MeHg) concentrations in five species of freshwater fish and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The concentrations of THg and MeHg in fish pond surface sediments were 33.1-386 ng g(-1) dry wt and 0.18-1.25 ng g(-1) dry wt, respectively. The age of ponds affected the surface sediment MeHg concentration. The vertical distribution of MeHg in sediment cores showed that MeHg concentrations decreased with increasing depth in the top 10 cm. In addition, a significant correlation was observed between %MeHg and DNA from Desulfovibrionacaea or Desulfobulbus (p<0.05) in sediment cores. Concentrations of THg and MeHg in fish muscles ranged from 7.43-76.7 to 5.93-76.1 ng g(-1) wet wt, respectively, with significant linear relationships (r=0.97, p<0.01, n=122) observed between THg and MeHg levels in fish. A significant correlation between THg concentrations in fish (herbivorous: r=0.71, p<0.05, n=7; carnivorous: r=0.77, p<0.05, n=11) and corresponding sediments was also obtained. Risk assessment indicated that the consumption of largemouth bass and mandarin fish would result in higher estimated daily intakes (EDIs) of MeHg than reference dose (RfD) for both adults and children.  相似文献   

19.

The environmental fate of metazachlor herbicide was investigated under field conditions in rapeseed cultivated and uncultivated plots, over a period of 225 days. The cultivation was carried out in silty clay soil plots with two surface slopes, 1 and 5 %. The herbicide was detectable in soil up to 170 days after application (DAA), while the dissipation rate was best described by first-order kinetics and its half-life ranged between 10.92 and 12.68 days. The herbicide was detected in the soil layer of 10–20 cm from 5 to 48 DAA, and its vertical movement can be described by the continuous stirred tank reactor (CSTR) in series model. Relatively low amounts of metazachlor (less than 0.31 % of the initial applied active ingredient) were transferred by runoff water. More than 80 % of the total losses were transferred at the first runoff event (12 DAA), with herbicide concentrations in runoff water ranging between 70.14 and 79.67 μg L−1. Minor amounts of the herbicide (less than 0.07 % of the initial applied active ingredient) were transferred by the sediment, with a maximum concentration of 0.57 μg g−1 (12 DAA), in plots with 5 % inclination. Finally, in rapeseed plants, metazachlor was detected only in the first sampling (28 DAA) at concentrations slightly higher than the limit of quantification; when in seeds, no residues of the herbicide were detected.

  相似文献   

20.

Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号