首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes risk assessment methods for two chronic exposure pathways involving arsenic contaminated soil, namely inhalation of fugitive dust emissions over a lifetime, and inadvertent soil/house dust ingestion. The endpoint in the first case is assumed to be lung cancer and in the second case skin cancer. In order to estimate exposures, inhalation rates and soil/dust ingestion rates are estimated for different age groups; indoor/outdoor time budgets for different age groups are developed; and indoor surface dust and air arsenic concentrations are estimated based on outdoor concentration measurements. Differences observed in indoor/outdoor ratios and arsenic containing dust particle size among different types of communities are noted, as well as possible relationship of particle size to bioavailability. Calculations of risk are presented using cancer potency factors developed by the U.S. Environmental Protection Agency, and uncertainties in these toxicity estimates are described based on: (1) evidence that arsenic may be neither a cancer initiator nor promotor, but may act instead as a late stage carcinogen and (2) evidence that the arsenic dose-response relationship for ingestion may be nonlinear at low doses due to increasing methylation of inorganic arsenic. The first of these considerations influences the relative importance ascribed to arsenic doses in different age groups. The latter consideration indicates that the risk estimates described here are probably very conservative.  相似文献   

2.
The aim of this work is to investigate the application of fly ash adsorbent for removal of arsenite ions from dilute solution (100–1,000 ppm). Experiments were carried out using material from the “Turów” (Poland) brown-coal-burning power plant, which was wetted, then mixed and tumbled in a granulator to form spherical agglomerates. Measurements of arsenic adsorption from aqueous solution were carried out at room temperature and natural pH of fly ash agglomerates, in either a shaken flask or circulating column, to compare two different methods of contacting solution with adsorbent. Adsorption isotherms of arsenic were determined for agglomerated material using the Freundlich equation. Kinetic studies indicated that sorption follows a pseudo-second-order model. Preferable method to carry out the process is continuous circulation of arsenite solution through a column.  相似文献   

3.
This paper presents an uncertainty and sensitivity analysis of a pharmacokinetic modeling of inorganic arsenic deposition in rodents for a short‐term exposure. Efforts to develop the pharmacokinetic model are directed towards predicting the kinetic behavior of inorganic arsenic in the body, including tissue and blood concentrations, and especially, the urinary excretion of arsenic and its methylated metabolites. However, the use of the model raises an important question when fixed values of model parameters are used: how is the uncertainty in the model prediction based on the collective uncertainties in the model inputs? This study focuses on an “epistemic”; uncertainty in order to handle this problem. In this case, the uncertainty refers to an input that has a single value which cannot be known with precision due to a lack of knowledge about items or its measurement. The combination of the pharmacokinetic model and the uncertainty analysis would help understand the uncertainties in risk assessment associated with inorganic arsenic.  相似文献   

4.
Arsenic is one of the few human carcinogens for which there is not yet a reliable animal cancer model. As such, the classification of arsenic as a carcinogen is based upon data derived from human epidemiologic studies. Although the mechanisms of action of arsenic as a toxic agent have been known for many years, the inability to produce cancer with arsenic in laboratory animals has confounded the operational characterisation of arsenic as initiator, promoter, complete carcinogen, or cocarcinogen for humans. Arsenic is clearly a genotoxic agent that induces chromosomal aberrations, micronuclei and sister chromatid exchange in mammalian cells as well as neoplastically transforms Syrian hamster embryo cells; however, it is not a classical point mutagen. This paper reviews some of the scientifically based issues relating to arsenic and risk assessment.  相似文献   

5.
Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible “everyday” chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.  相似文献   

6.
The effects of arsenic (As) species, such as As(III), As(V) and dimethylarsinic acid (DMA), on the accumulation of As in cucumber (Cucumis sativus), as well as on its growth in a soil mesocosm were evaluated. When Cucumis sativus was cultivated in soils contaminated with 20 and 50 mg/kg of As(III), As(V) or DMA for 40 days, the growth was markedly inhibited by the inorganic As (As(III) and As(V)) rather than the organic As (DMA). Irrespective of the As species, the As concentrations accumulated in Cucumis sativus increased with increasing As concentration in the soil. The As bioaccumulation factors from soil into the tissue of Cucumis sativus were 17.5-35.4, 29.3-42.7 and 17.6-25.7 for As(III), As(V) and DMA, respectively. In addition, the As translocation factors from the roots to shoots were 0.025-0.031, 0.018-0.032 and 0.014-0.026 for As(III), As(V) and DMA, respectively. In conclusion, Cucumis sativus mainly accumulated As in its roots rather than its shoots and easily accumulated inorganic rather than organic As from the soil into its tissue.  相似文献   

7.
Seasonal differences in the dissolved arsenic concentration and speciation in a contaminated urban waterway in northwest England have been determined using a coupled ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) technique. Waters sampled in the vicinity of an industrial works during relatively dry conditions in April 2000 were found to contain total arsenic concentrations (As) of up to 132 g L–1, more than an order magnitude greater than the 4 g L–1 maximum found in December 2000. The difference in As between the April and December sampling periods is speculated to be largely due to the irregular anthropogenic supply of arsenic to the watercourse. For both sampling periods, the dissolved arsenic was exclusively inorganic in nature and had an As(V)/As ratio of between 0.6 and 0.8. Analysis of samples taken downstream of the industrial site, after the confluence with a relatively As-poor stream, revealed that As(III), As(V) and As concentrations were lower than would be expected from conservative mixing. The As(V)/As ratio was also observed to decrease markedly. The loss of arsenic from solution is thought to be due to adsorption on the iron oxyhydroxide-rich sediment observed to coat the riverbed downstream of the confluence. The reduction in the As(V)/As ratio is believed to be due to the more rapid adsorption of As(V) compared to that of As(III). Deviations from conservative behaviour were more marked during the relatively dry April 2000 sampling period and suggest the increased importance of adsorption processes controlling arsenic availability during this time.  相似文献   

8.
Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40–25,873.3 mg kg?1, 7.10–1448.80 mg kg?1 and 12–606 μg L?1, respectively, arsenic concentrations in humans’ hair and urine and sheep’s wool and urine varied from 0.37–1.37 μg g?1 and 9–271.4 μg L?1 and 0.3–3.11 μg g?1 and 29.1–1015 μg L?1, respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.  相似文献   

9.
This review will focus primarily on ohe effects of the inorganic arsenicals (arsenate and arsenite forms) that are present in drinking water. They are acutely toxic to both humans and animals, an effect that may be related to their bioavailibility. In humans, arsenicals have been reported to cause dermatitis and mucous membrane irritation upon exposure. They have also been reported to cause skin lesions and peripheral neurotoxicity in smelter workers and in patients treated with Fowler's Solution. When humans are exposed to arsenic in drinking water, effects such as hyperkeratosis, electromyographic abnormalities and vascular effects have been reported. In experimental animals, arsenic has been demonstrated to affect the liver and kidneys. In mice, arsenic has also been reported to decrease the animal's resistance to certain viral infections. The arsenite (+3) and arsenate (+5) forms have different modes of action. Arsenite binds to sulphhydryl groups and has been reported to inhibit over 100 different enzymes, while the arsenate can substitute for phosphate in various high energy intermediates, resulting in arsenolysis. In addition, when arsenate is reduced to arsenite in the body, it can also cause toxicity as that species.  相似文献   

10.
Three different sorbents based on hydrated ferric oxide (GEH, ArsenXnp and Lewatit FO 36) were compared from the viewpoints of their column operation. Particle size distribution, pressure drop across the column and ferric oxide content were measured. Sorption capacities under the presence of accompanying ions were measured in batch wise and column experiments.  相似文献   

11.
The objective of this study is to examine the adsorption–desorption behavior of a magnetically active hybrid sorbent (MAHS) material, prepared by dispersing colloid-like hydrated iron oxide particles in the outer periphery of a macroporous ion-exchange resin (Amberlite XAD-2). The experimental results show that the new sorbent material can simultaneously remove arsenic (V) and a chlorinated organic compound (2,6-dichlorophenol [2,6-DCP]) from aqueous solutions at around neutral pH. The recovery of arsenic and 2,6-DCP from MAHS was conducted using a regenerant containing 50% (v/v) CH3OH + 3% (w/v) NaOH. In less than 10 bed volumes of regenerant, more than 90% of As(V) and 2,6-DCP were recovered.  相似文献   

12.
An argument is presented in which areas of natural arsenic contamination of modern groundwaters throughout Asia have a common origin. Arsenic originally accumulated in oceanic ferro-manganoan sediments of the eastern Palaeo-Tethys. This was further concentrated through oceanic crustal extinction in what later became the south-east Chinese accreted mineralised terrain. Proto-Himalayan uplift of this area created the palaeo-drainage systems of the Ganges – Brahmaputra, Irrawaddy, Mekong, and Red Rivers, with consequent headwater erosion of arsenic-rich sediments. Their downstream deposition as immature and easily redistributed Neogene sandstones, silts, and iron-rich clays has created secondary and tertiary reservoirs of adsorbed and authigenic arsenic, from which the current arsenic-rich groundwaters have evolved. Considering river basins within the above palaeo-hydrogeological framework provides a basis for assessing the risk of arsenic in groundwater basins of south and south-eastern Asia.  相似文献   

13.
Geogenic arsenic (As) contamination of groundwater is a major ecological and human health problem in southwestern and northeastern coastal areas of Taiwan. Here, we present a probabilistic framework for assessing the human health risks from consuming raw and cooked fish that were cultured in groundwater As-contaminated ponds in Taiwan by linking a physiologically based pharmacokinetics model and a Weibull dose–response model. Results indicate that As levels in baked, fried, and grilled fish were higher than those of raw fish. Frying resulted in the greatest increase in As concentration, followed by grilling, with baking affecting the As concentration the least. Simulation results show that, following consumption of baked As-contaminated fish, the health risk to humans is <10?6 excess bladder cancer risk level for lifetime exposure; as the incidence ratios of liver and lung cancers are generally acceptable at risk ranging from 10?6 to 10?4, the consumption of baked As-contaminated fish is unlikely to pose a significant risk to human health. However, contaminated fish cooked by frying resulted in significant health risks, showing the highest cumulative incidence ratios of liver cancer. We also show that males have higher cumulative incidence ratio of liver cancer than females. We found that although cooking resulted in an increase for As levels in As-contaminated fish, the risk to human health of consuming baked fish is nevertheless acceptable. We suggest the adoption of baking as a cooking method and warn against frying As-contaminated fish. We conclude that the concentration of contaminants after cooking should be taken into consideration when assessing the risk to human health.  相似文献   

14.
We developed a cost-effective and sensitive spectrophotometric method for the determination of arsenic at trace level using a new reagent, leuco malachite green. Here we show that, arsenic reacts with potassium iodate in acidic conditions to liberate iodine, and the liberated iodine selectively oxidizes leuco malachite green to malachite green dye. We studied the Beer’s law at 617 nm, which showed linearity over the concentration range 0.09–0.9 μg ml−1 of arsenic. We show that the molar absorptivity, Sandell’s sensitivity and detection limit of the method are 6.1 × 104 l mol−1 cm−1, 0.0012 μg cm−2 and 0.025 μg ml−1, respectively. We applied the developed method for the determination of arsenic in environmental samples.  相似文献   

15.
Arsenic presents several unique problems in risk assessment. First, there is no good animal model for arsenic as a carcinogen, although in humans arsenic exposure through inhalation is judged to cause lung cancer and ingested inorganic arsenic is judged to cause skin cancer. Second, detoxification of arsenic through methylation is believed to be important, but the mechanisms and the quantitative relationships are not yet understood.EPA provided a risk assessment for ingested inorganic arsenic in its 1984 Health Assessment Document and a revised version in 1988. In both cases EPA calculated a cancer potency or slope factor using epidemiological data from Taiwan. EPA's standard or default risk assessment procedure is to use the linear coefficient from the multistage model in order to calculate cancer risk. This procedure was challenged by the EPA Science Advisory Board (SAB) in a report to the Administrator in September of 1989. The SAB recommended that EPA (1) develop a revised risk assessment based on estimates of the delivered dose of non-detoxified arsenic to target tissues, and (2) consider the potential reduction in cancer risk due to detoxification in establishing an MCL for arsenic.This paper will draw upon the author's experience with the SAB to summarise major issues in arsenic risk assessment and to examine how these issues might be resolved through further research.  相似文献   

16.
17.
In this review paper, various methods for arsenic removal from water have been described by explaining the related mechanisms of each methods. Advantages and drawbacks were discussed. Membrane methods were suggested as reliable methods for elimination of arsenic from water in addition to other conventional separation methods.  相似文献   

18.
Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.
  相似文献   

19.
Skin lesion is one of the important health hazards caused by high intake of arsenic through drinking water and diet, and the other hazards include several types of cancers (viz. skin, lung and urinary bladder), ischemic heart disease, hypertension, etc. Two most important biomarkers to measure arsenic intake in a human body are arsenic concentration in urine and hair. The primary interest of this paper is the association between skin lesion and arsenic concentration in hair for participants with chronic arsenic exposure from West Bengal, India, using bivariate regression model based on copula function. The result showed participants with high arsenic concentration in hair had higher incidence of developing skin lesion. Arsenic concentration in hair was significantly higher for the participants with an arsenic concentration in water?>?10 mg/L.  相似文献   

20.
The arsenic levels of 23 mineral waters on sale to the public in the United Kingdom were measured. The arsenic content of most waters was below 1 g L–1 but the statutory limits of 50 ug L–1 for natural mineral waters and 100 g L–1 for non-alcoholic beverages were exceeded by the French mineral water, Vichy Célestins (220 ug L–1). Regular consumption of mineral water of such elevated concentration could make a significant contribution to the intake of the more toxic inorganic species of arsenic, with possible adverse long-term effects on the health of some individuals. The general need for analytical speciation studies of dietary arsenic is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号