首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为使扩散方程能够准确描述煤粒瓦斯涌出规律,首先依据相似理论和扩散第二定律建立瓦斯扩散系数计算方法,并结合试验数据得到扩散系数与时间的关系。然后基于此构建煤粒瓦斯瞬时扩散球状模型,运用分离变量法对模型进行求解,得到该模型的无穷级数解析解和模型系数的确定方法。最后通过计算值与试验值对比验证瞬时扩散模型的准确性,同时分析瞬时扩散模型与煤体复杂孔隙结构的关系。结果表明:扩散系数随时间的变化符合幂函数递减规律;构建的瞬时扩散模型能够准确描述煤粒瓦斯扩散规律,理论计算高度反映了试验结果;瞬时扩散模型可以从时空角度体现煤粒复杂的孔隙结构。因此该模型可用于计算瓦斯预测参数和研究瓦斯动力灾害形成过程。  相似文献   

2.
王登科      王洪磊    魏建平     《中国安全生产科学技术》2016,12(7):10-15
为研究颗粒煤瓦斯解吸规律,基于Fick定律建立了颗粒煤的多扩散系数瓦斯解吸 模型,完成了颗粒煤瓦斯解吸模型的数值试验。引入了非负约束最小二乘法反演算法( NNLS),通过试验数据反演得出颗粒煤的扩散参数的B谱,从而确定出颗粒煤瓦斯扩散 系数D的准确范围。研究结果表明:颗粒煤瓦斯解吸符合Fick扩散定律,颗粒煤的多扩 散系数瓦斯解吸模型能很好地解决单一扩散系数模型的扩散系数随时间衰减的问题,准 确反映了颗粒煤瓦斯解吸规律,单一扩散系数瓦斯解吸模型只是多扩散系数瓦斯解吸模 型的一个特例;NNLS是一种有效的反演算法,利用NNLS方法可以准确反演出颗粒煤瓦斯 解吸过程中的扩散参数的B谱,通过B谱可方便计算出颗粒煤的瓦斯扩散系数。  相似文献   

3.
为研究不同外界条件下瓦斯(甲烷)在煤体内部的扩散规律,根据相似理论和扩散方程建立瓦斯扩散系数计算方法,研制煤粒瓦斯扩散测定系统,并通过试验测定了不同煤体结构、不同压力、不同粒度条件下煤粒瓦斯瞬时扩散系数,分析不同条件下瞬时扩散系数的变化特征。研究结果表明:瞬时扩散系数与时间成幂函数递减关系;瓦斯在构造煤中的初期瞬时扩散系数远大于原生结构煤;随着粒度的增大,原生结构煤和构造煤中的瓦斯瞬时扩散系数明显增大,原生结构煤中的瓦斯瞬时有效扩散系数逐渐增大,但构造煤中瓦斯瞬时有效扩散系数却明显减小。  相似文献   

4.
为简单、准确地测定和计算煤粒瓦斯扩散系数,依据相似理论,从扩散方程中推导出相似准数,建立该相似准数与解吸率的回归关系式,以此代替扩散第二定律在第一边界条件下的解析解,进而提出煤粒瓦斯扩散系数的计算方法。在此基础上,设计煤粒瓦斯扩散系数测定系统,并测定不同时刻、压力条件下的煤粒瓦斯扩散系数。最后,结合试验数据将新方法与其他煤粒瓦斯扩散系数计算方法进行对比。结果表明,煤粒瓦斯扩散系数是时间的函数,初期迅速减小,随后趋于稳定,扩散系数与时间关系符合负幂指数变化规律。通过对比表明,新方法可以弥补简化计算对结果造成的影响,且简便、可靠。  相似文献   

5.
为探索温度对煤粒瓦斯扩散特性的影响,利用瓦斯吸附/扩散仪分别对不同温度下的等温吸附,同温同压初始条件下的煤粒升温瓦斯扩散,同压不同温初始条件下的恒温煤粒瓦斯扩散进行试验研究。试验结果表明:同温同压初始条件下的等效扩散系数随温度升高呈指数关系增大。同压不同温初始条件下的恒温综合扩散系数随温度升高呈先增大后降低的变化趋势。温度升高时,温度与初始吸附量对综合扩散系数具有相反的影响作用趋势。不同温度下,相同时间内的扩散量取决于二者的配比关系。建立温度影响下的理论扩散方程,数值模拟不同温度下的全过程扩散特征。计算结果表明:随着时间延长,各温度下的恒温扩散曲线呈多点交叉状态,符合试验关系。  相似文献   

6.
为了研究分析不同含水率对煤粒瓦斯扩散的影响,以平煤八矿构造煤为研究对象,利用瓦斯扩散试验装置,测定不同含水率条件下煤粒瓦斯解吸量,对比分析不同扩散模型,优选适合描述含水煤粒瓦斯解吸全过程的扩散模型,进而研究不同含水率对煤粒瓦斯扩散系数的影响。研究结果表明:相同时段下,干燥煤样的累计瓦斯解吸量最大,随着含水率增加煤样的累计瓦斯解吸量越来越小,水分的增加封堵了瓦斯扩散通道,在煤微孔隙内产生一定的蒸气压增大了瓦斯扩散的阻力使得单位时间内的瓦斯解吸量不断减小;通过3种扩散模型的对比发现幂函数模型在误差大小和稳定性方面都优于其他2种模型;利用该幂函数模型对扩散系数进行计算得出4种含水率对煤粒扩散系数的影响发现,扩散系数均经历前期快速下降和后期缓慢下降2个阶段,扩散系数随含水率的增大而减小且扩散速率趋于稳定。  相似文献   

7.
为揭示不同粒径构造煤的瓦斯扩散特征,采用瓦斯解吸仪分别在井下现场和实验室内开展了原煤样和不同粒径的构造煤瓦斯扩散实验,并采用低温氮吸附法测定其孔径分布,采用动扩散系数新扩散模型计算各类扩散实验的初始扩散系数D0及其衰减系数β、有效初始扩散系数De0和有效动扩散系数De(t)。结果表明:各类粒径构造煤的瓦斯扩散率初期增长较快,但衰减迅速。同时刻下,粒径越大,D0越大,β越小,构造煤中孔隙由表及里孔径逐渐缩小,正是这种孔径特征控制了D0和β的大小。同时,粒径越大De0和De(t)越小。与之相反,井下构造煤原煤样具有更小的粒径,致使原煤样的瓦斯扩散速度更快,因此构造煤具有更严重的突出危险性。  相似文献   

8.
为了研究煤粒瓦斯扩散系数对气压的依赖性,应用自主搭建的煤岩吸附瓦斯实验系统进行不同气压条件下的煤粒瓦斯扩散实验,并通过模型拟合得到不同气压条件下的扩散系数,分析扩散系数对气压的依赖性。研究结果表明:实验煤样具有双重孔隙结构;由于煤粒对瓦斯具有吸附性,导致模型拟合得到的扩散系数是表观扩散系数而不是真实扩散系数;表观扩散系数与真实扩散系数呈正比例关系,与等温吸附线斜率呈反比例关系;在低压阶段,煤粒瓦斯扩散由努森扩散主导,此时表观扩散系数与气压呈正比例关系;在高压阶段,煤粒瓦斯扩散由分子扩散主导,此时表观扩散系数与气压呈反比例关系。  相似文献   

9.
为研究温度压力对吸附饱和度和进扩散时间的影响,以确定实验室内不同温压下原煤煤芯可接受的吸附饱和度和进扩散时间,建立了柱状煤芯瓦斯扩散模型,采用φ50mm×100mm的柱状煤芯开展了不同温压下的瓦斯扩散实验。经实验检验,模型能很好描述原煤柱状煤芯的瓦斯扩散过程。计算了不同温压下柱状原煤煤芯达到不同吸附饱和度所需的吸附进扩散时间和不同时间的瓦斯质量浓度分布。结果表明:温度越高,扩散系数越大,吸附平衡时间越短;压力越高,扩散系数越小,吸附平衡时间越长。考虑实验精度要求和可接受时间,在30~40℃,瓦斯压力0.5~3MPa的范围内,建议渗流实验吸附饱和度为80%,吸附时间为6~8 d;精度要求较高的扩散实验,吸附饱和度为90%,吸附时间为10~12 d。  相似文献   

10.
为了研究煤粒瓦斯扩散系数对气压的依赖性,应用自主搭建的煤岩吸附瓦斯实验系统进行不同气压条件下的煤粒瓦斯扩散实验,并通过模型拟合得到不同气压条件下的扩散系数,分析扩散系数对气压的依赖性。研究结果表明:实验煤样具有双重孔隙结构;由于煤粒对瓦斯具有吸附性,导致模型拟合得到的扩散系数是表观扩散系数而不是真实扩散系数;表观扩散系数与真实扩散系数呈正比例关系,与等温吸附线斜率呈反比例关系;在低压阶段,煤粒瓦斯扩散由努森扩散主导,此时表观扩散系数与气压呈正比例关系;在高压阶段,煤粒瓦斯扩散由分子扩散主导,此时表观扩散系数与气压呈反比例关系。  相似文献   

11.
为了证实和完善极限粒度理论,制备了煤粒度毫米级至厘米级(>10 mm)的5种粒度煤样,利用H-Sorb 2600T高温高压气体吸附分析仪对不同粒度的煤样进行等温吸附-解吸实验,并采用动扩散系数模型计算了煤粒瓦斯解吸扩散系数,分析不同粒度煤的扩散系数变化特征。研究结果表明:粒度毫米级煤样单位瓦斯解吸量和瓦斯解吸率随粒度的增大呈现逐渐减小的趋势;粒度厘米级煤样单位瓦斯解吸量和瓦斯解吸率随粒度的增大降幅较小;煤粒度在毫米级范围内,初始有效扩散系数D0e和平均有效扩散系数Dae随粒度的增大快速下降;煤粒度为厘米级时,初始有效扩散系数D0e和平均有效扩散系数Dae随粒度的增大基本保持不变;极限粒度理论正确可靠,煤的极限粒度小于10 mm。  相似文献   

12.
为更真实可靠地还原回采工作面及采空区内流场和瓦斯场的分布特征,基于回采工作面和采空区不同的介质属性,并考虑瓦斯扩散能力的差异,建立了各自的强耦合多物理场数学模型,并给出了瓦斯涌出所满足的质量通量边界条件。采用COMSOL Multiphysics构建了强耦合的自由和多孔介质流动以及自由和多孔介质稀物质传递等物理场,以龙煤矿业集团股份有限公司双鸭山分公司的东保卫井田二水平一采区36号煤-570左面为研究对象,研究了回采工作面及采空区稳态下的瓦斯运移特征。结果表明:采空区浅部瓦斯体积分数较小但梯度较大,且随着采空区向深部延伸,瓦斯体积分数的梯度逐渐降低,但其数值逐渐增大并趋于稳定;另外,采空区内实测的瓦斯体积分数分布与数值模拟结果具有较好的一致性,验证了建立的回采工作面及采空区瓦斯运移的数学模型和数值模型的可靠性和准确性。  相似文献   

13.
为研究时间因素对扩散系数拟合计算的影响,基于经典扩散模型分析其拟合过程中的理论误差,并选用不同时间段及时间间隔的颗粒煤瓦斯扩散动力学试验数据,通过常规及定截距2种线性拟合方式分析扩散系数及确定系数R~2随时间的变化趋势。结果表明:拟合理论误差随着扩散时间延长而降低,常规拟合和定截距拟合计算得到的扩散系数随着扩散时间的延长而趋于相同,但两者得到的扩散系数随时间段、时间间隔增大呈现不同变化特征,并受到0点数据的影响。  相似文献   

14.
水分是含瓦斯煤粒扩散规律的重要影响因素之一,运用自制设备,试验研究当水分小于等于平衡水时,3种变质程度煤样的瓦斯扩散量、扩散速度和扩散系数随水分、扩散时间的变化规律;基于气体在多孔介质内的吸附解吸理论和Fick扩散定律,分析水分对瓦斯在煤粒内扩散动力参数和动态过程的影响机理。结果表明,在不大于煤样平衡水分条件下,高、中、低变质程度煤样的瓦斯极限扩散量、解吸速度和瓦斯扩散系数随水分增加而显著降低,同一种变质程度干燥煤样的瓦斯扩散系数基本是平衡水分煤样的3~5倍;水分的增加降低了煤粒内的瓦斯初始质量浓度和扩散系数,进而大幅度降低了瓦斯扩散速度;水分子更容易占据煤基质表面吸附位,致使煤对瓦斯的吸附量减少,水分子在煤粒内表面发生多层吸附,而堵塞部分的瓦斯分子在煤粒内表面扩散,缩小了扩散通道,增大了瓦斯扩散阻力,导致含瓦斯煤粒的瓦斯扩散系数减小。  相似文献   

15.
准确掌握和明晰燃气泄漏扩散规律,准确地表达出在实际地理空间中燃气泄漏扩散浓度场的分布情况,具有十分重要的意义.以气体热力学、动力学、湍流扩散的梯度理论和统计理论为基础,分析在静风条件下无限空间瞬时点源扩散模式,考虑烟气抬升高度等因素,采用移动烟团积分方法,建立了改进的静风条件下地面点源的天然气连续泄漏扩散模型.以Matlab对模型作计算处理和数值模拟,并以CFD软件进行了模拟验证.  相似文献   

16.
为研究采空区瓦斯富集机制,解决瓦斯抽采浓度偏低的问题,用自制的多元气体富集试验装置,模拟采空区不同浓度瓦斯的运移过程,并基于分子扩散理论进行分析。结果表明,瓦斯和空气的密度差产生的浮力导致采空区内瓦斯浓度自下而上整体呈增高趋势,并在其上部形成瓦斯富集区;由于混合气体密度差使气体浮力作用的压力扩散效应强于分子扩散效应,采空区内形成较明显的瓦斯分层现象;采空区遗煤内本身赋存的瓦斯浓度越高,瓦斯富集区内瓦斯浓度越高。  相似文献   

17.
为研究常用瓦斯解吸经验模型对解吸量预测准确性,基于容量法试验测定长时间的煤屑瓦斯累计解吸量,通过截取不同时段的瓦斯解吸量数据回归拟合得到常用解吸经验模型参数,并将其代入模型中计算出瓦斯解吸量与试验测定量进行对比。研究结果表明:各常用经验模型公式对不同时间段数据拟合都表现出较好的效果;巴雷尔式不适合用于煤屑的瓦斯解吸预测;指数型经验模型公式计算得到曲线受制于拟合数据时间段长短,在拟合时间段后很快趋于平直而低估累计瓦斯解吸量;乌斯季诺夫式适合用于短时间煤屑瓦斯解吸数据推算长期瓦斯解吸量;重庆-文特式适合用于预测短期瓦斯解吸量,而利用较长时间段瓦斯解吸量数据推算煤屑瓦斯解吸量宜采用艾黎式。该研究成果对于煤的瓦斯涌出及煤层气产能预测有着重要实际意义。  相似文献   

18.
为了更好地掌握焊接烟尘的扩散规律,减少造成的职业危害,将肖诗祥的数学模型和简化后的高斯模型应用于焊接烟尘的扩散研究。通过实验研究,优化焊接烟尘扩散系数等关键参数,并给出经验公式;采用数学模型计算的方法,获得不同数学模型下的焊接烟尘浓度空间分布特征,并用实验数据与之进行对比和误差分析,确定较优的焊接烟尘扩散数学模型,为进一步研究焊接烟尘空间浓度特征和烟尘危害控制奠定基础。  相似文献   

19.
为探究静电场对煤体瓦斯扩散变化特性的影响,自主设计并构建瓦斯解吸-扩散试验系统,选取古汉山矿、鹤壁六矿、平顶山八矿和义马耿村矿4个矿区不同变质程度煤样,用以测定电场强度为0、40、120、240 kV/m下的解吸-扩散量,并利用经典单孔扩散模型计算各煤样在4种场强作用下的扩散系数。结果表明:静电场下,随着施加场强的增大,煤样扩散系数具有先增大后减小的变化特征,且呈抛物线状;特征优势场强为40 kV/m时各煤样扩散系数达到最大,而其他场强作用下扩散系数都有所减小;对比不同变质程度煤样电场下扩散特性,结果显示,平顶山八矿肥煤在电场下扩散系数最大,义马矿褐煤扩散系数最小。静电场下扩散特性变化原因为:煤体和瓦斯分子发生激发极化改变了煤体表面吸附势阱深度;电场能引起煤体内微小孔的体积和比表面积增加(减小)。  相似文献   

20.
倾斜巷道中风流方向对瓦斯分布与积聚的影响   总被引:1,自引:1,他引:0  
基于计算流体动力学基本理论,利用Fluent软件,采用控制容积法对描述流体流动的控制方程进行离散,用SIMPLEC(协调一致的压力耦合方程组的半隐式方法)算法来解算流场,使用标准 k-ε 壁面函数法解决近壁面的流动,在湍流充分发展区使用标准双方程湍流模型,对倾斜巷道两帮煤壁涌出瓦斯情况下的瓦斯分布与积聚进行数值模拟,研究了风速和倾角不同时风流方向对巷道中瓦斯分布的影响规律.结果表明:倾斜巷道两帮煤壁涌出瓦斯情况下巷道两帮煤壁附近及其上部的两个角上容易积聚高浓度瓦斯,且同一个横断面上部的瓦斯浓度比下部高;风速越大、巷道倾角越大,高浓度瓦斯与空气的交换距离越短,瓦斯与空气充分混合需要的距离越短;下行通风且风速较小时,巷道顶板出现明显的瓦斯逆流现象,逆流区瓦斯浓度远大于瓦斯涌出点下风流一侧的瓦斯浓度,随着风速增大,瓦斯逆流长度逐渐变短.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号