首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究特厚煤层分层开采过程中已采工作面上覆围岩破坏高度,以老虎台矿83002已采工作面为例,分别采用EH-4物理探测、数值模拟和微震监测等多种手段进行分析论证。EH-4探测确定了垮落带和裂隙带位于油页岩层内,高阻区位于绿色页岩和砂砾岩的交界面,F1断层处出现离层空间,数值模拟和微震监测对该结果进行了验证;数值模拟和微震监测综合确定了覆岩破坏高度为400~485 m,为累计采高的6.3~7.5倍。研究成果可对下一分层83003工作面的安全开采进行指导,为类似条件矿井提供借鉴。  相似文献   

2.
为了确定老虎台矿特厚煤层不同开采阶段"弱-弱"结构覆岩破坏高度,以63005工作面所在区域为研究对象,构建FLAC3D数值计算模型,对研究区域水砂充填开采阶段和综采放顶煤开采阶段覆岩破坏高度进行分析,确定了覆岩破坏高度与采出厚度的关系.分别采用微震监测、EH-4探测法对研究结果进行了验证.结果表明:无论水砂充填开采阶段还是综采放顶煤开采阶段,老虎台矿"弱-弱"结构覆岩最大破坏高度均约为等效采高的8.5倍;63005工作面开采前后,覆岩破裂最大高度与油母页岩和绿色页岩的分界面密切相关,均被控制在分界面之下;覆岩破坏高度受到F18断层的影响,被约束在断层破碎带沿走向范围内;63005工作面开采后,绿色页岩层中F18断层的下盘出现离层破坏,且破坏范围呈逐步扩大的趋势.  相似文献   

3.
薄基岩厚松散含水层下综放开采安全性研究   总被引:1,自引:0,他引:1  
为研究薄基岩厚松散层含水层下综放开采的安全性,通过对赵家寨煤矿12采区东翼松散层地质特征分析,将其分为"一隔三含",并揭露其厚度和结构分布特征对煤炭开采的影响。采用经验公式计算不同采高下导水裂隙带高度,并建立UDEC数值模型模拟分析开采过程中上覆岩层变形破坏规律。基于导水裂隙带高度经验公式计算、数值模拟结果和相关实测资料,并结合12采区东翼的地质特征,引入"导水裂隙带高度调整系数n"概念,提出并验证该区域的导水裂隙带高度计算公式。结果表明,12采区东翼大部分区域可疏干新近系下部含水层后开采,研究内容可减小防水煤岩柱高度,提高煤炭采出率。  相似文献   

4.
覆岩采动裂隙带发育规律的数值模拟分析   总被引:10,自引:0,他引:10  
运用FLAC-3D数值模拟软件,对特定开采条件下覆岩破坏发育规律进行分析.通过现场实测,获取基础数据.建立合理的数学模型,对实测数据进行反演计算.数值模拟分析获得的结果准确可靠,可以预计类似条件下的覆岩采动裂隙带发育高度.  相似文献   

5.
复合顶板综放面覆岩破坏及裂隙演化相似模拟试验   总被引:1,自引:0,他引:1  
煤层回采过程中,覆岩破坏特征以及裂隙演化规律对于矿井水、瓦斯防治具有重要意义。采用相似模拟试验对某煤矿复合顶板大采高综放工作面覆岩破坏及裂隙演化规律进行研究。研究结果表明:复合顶板大采高综放开采垮落带高度为32.6m,裂隙带高度为64.6m;煤层回采过程中对顶板覆岩支承压力的影响,近煤层大,远煤层小;覆岩采动裂隙倾角以中角度,宽度以中宽度为主,且裂隙数量随着远离煤层而逐渐减少;采动过程中,近距离煤层覆岩为采动裂隙聚集区,覆岩裂隙密度曲线呈现为"波浪"型。  相似文献   

6.
为了研究倾斜特厚煤层综放开采采空区孔隙率分布规律,确定采空区高位钻孔位置,有效治理采空区瓦斯灾害,以硫磺沟煤矿9-15(06)工作面为例,采用UDEC数值模拟软件研究采空区覆岩垮落和裂隙演化规律,根据采空区覆岩下沉量,计算得到采空区孔隙率三维分布规律。研究结果表明:倾斜特厚煤层采空区覆岩位移云图在垂直方向呈3段分布,以距离工作面底板23 m和80 m为分界线,位移矢量密度显著降低,冒落带高度为23 m,与经验公式25 m基本一致,大于薄、中厚和厚煤层;受倾角影响,垮落矸石滑移、充填采空区下端,覆岩下沉量呈非对称椭圆形,中上部下沉量最大;冒落带孔隙率在上、下隅角处最大,中上部最小,随着覆岩高度增加,采空区边缘处和深部孔隙率差值逐渐减小。研究结果为倾斜特厚煤层采空区瓦斯抽采高位钻孔的布置提供了理论基础。  相似文献   

7.
回采工作面煤层被采出以后,上覆岩层产生离层、断裂、垮落等运动,形成的冒落带和裂隙带范围对煤矿安全生产影响极大.以顾桥煤矿1116(1)综采工作面为工程背景,采用数值模拟和井下电法测试技术,研究了淮南矿区11-2煤层开采时覆岩移动破坏的规律.结果表明:在垂直方向上,采空区上方覆岩破坏分区特征明显,由下而上依次为双拉应力破坏区、拉伸裂隙区、剪切破坏区和未破坏区域;冒落带最大高度11.5~14.5 m,裂隙带最大高度45~47.5 m;覆岩破坏最终形态类似于马鞍形,破坏在水平方向的范围要比开采区域大.  相似文献   

8.
在分析榆阳煤矿覆岩赋存特征的基础上,建立了采动岩体力学模型,利用有限差分程序(FLAC)对采动引起的覆岩破坏进行了数值模拟,得出了导水裂隙带发育高度最大值为50m;采用WSD-2数字声波仪测定岩样的物理力学性能,分析得知覆岩中泥岩强度大于砂岩,且抗压与抗拉强度的比值较高,使得岩层呈脆性材料特征,对导水裂隙带的发育有利,这样给保水开采增加了难度.  相似文献   

9.
导水裂隙带高度是水体下安全采煤的主要依据,本文通过数值计算、相似材料模拟、规程预测和工程类比等方法,对高头窑煤矿水多湖川和大哈他土沟河下浅埋煤层开采时导水裂隙带高度进行了预测研究,结果表明:几种方法预测结果有一定的误差,综合工程类比结果,高头窑煤矿水多湖川和大哈他土沟下采煤时裂采比定为15。由于高头窑煤矿2-3煤层上覆基岩段厚度较薄,根据三下开采规程,煤层开采需要进行安全限采控制,采高h≤H/19,以达到控制导水裂隙带高度的目的,实现河下采煤的安全开采。  相似文献   

10.
针对深井大采高综采技术中采场矿压控制难的特点,以潘二矿11223大采高综采工作面为工程背景,采用相似模拟、数值模拟、现场矿压监测、理论分析等方法,对深井大采高综采工作面矿压显现及覆岩运动破断规律进行研究。结果表明:深井大采高综采面覆岩运动破断后结构形态演化特征可概括为“组合悬臂岩梁结构——压实填充结构——非铰接岩梁结构——铰接岩梁结构”的动态演化过程,这种动态演化过程直接影响着工作面的矿压显现特征及覆岩破坏特点;得到工作面初次来压步距为34 m,基本顶周期来压步距15 m,来压由中部开始向两端转移;工作面前方应力集中区距煤壁平均4.4 m,应力峰值平均为26 MPa,工作面矿压显现特点受控于覆岩运动破断的动态演化力学结构,研究结果对类似条件下的工作面安全开采具有一定的理论依据和借鉴意义。  相似文献   

11.
为合理设计大采高工作面高抽巷布置层位及抽采方案,基于大采高采动覆岩变形和裂隙发展规律的重要性,以某实际工作面覆岩分布与地质条件为原型,采用相似模拟试验方法,研究大采高工作面开采引起的覆岩变形、破坏和下沉。利用YJD-27静动态电阻应变仪数控自动巡回监测系统和Leica-TC405全站仪观测系统监测和记录试验数据。结果表明:大采高工作面垮落带发育高度约为采高的4.2倍,中部裂隙带发育高度约为采高的16倍,覆岩应变程度最明显区域为距煤层顶板约60 m位置;大采高工作面开采后,覆岩的破断、下沉,及其导致的煤层顶板裂隙的发生、发展和闭合,均有阶段性特征。  相似文献   

12.
在大型水体下顶水采煤,一方面要确保煤矿井下安全生产,同时要保护地表水资源不被破坏。基于峰峰矿区小屯矿的地质采矿条件,在分析与评价上覆岩层结构的基础上,选取水体下11个计算特征点,探讨上覆岩层破坏高度、防水安全煤岩柱及安全煤岩柱最小富余尺寸,绘制各类等值线图。采用概率积分法,从下沉、倾斜、水平变形和裂缝深度等方面,研究分析顶水开采后水体底部所受的采动影响。结果表明,在特定的地质采矿条件下,各工作面开采以后,上覆岩层中导水裂隙带发育的最大标高与基岩顶部之间具有较厚的岩柱,导水裂隙带不会波及到地表水体,水体底部的地表移动变形较小,不会影响到矿井安全生产,在大型水体下顶水采煤是安全可行的。  相似文献   

13.
为了分析裴沟矿31采区的煤炭开采对上部魔洞王水库的影响,以及评价水体下开采的安全性,首先分析了岩土体材料在三轴压缩试验中表现出来的应变软化现象,认为岩石峰后的软化能够说明覆岩破坏后的力学特性;然后介绍了FLAC3D中应变软化模型;最后分别建立Mohr—Coulomb理想弹性模型和应变软化模型的数值模型,针对工作面推进过程中覆岩移动破坏的特征以及顶板导水裂隙带发育规律,分析了两者计算结果的差别,计算结果表明:应变软化模型对覆岩移动破坏特征的计算更加准确,能够说明工作面推进过程中覆岩移动规律,通过其计算得到的导水裂隙带高度的预计对水体下采煤的安全性评价有一定的参考价值。  相似文献   

14.
为了研究司马矿薄基岩厚松散层特殊地质条件下的采动覆岩破坏、渗流等特性,评价发生顶板突水的危险性,建立了薄基岩厚松散层开采条件下的数值计算模型。采用理论分析、数值模拟和现场工程相结合的方法,利用多物理场耦合数值模拟软件COMSOL Multiphysics,研究了随工作面推进采场的变形、破坏、渗流和应力变化规律。结果表明:在司马矿薄基岩厚松散层这一特定的地质条件下,工作面涌水量、顶板破坏高度均随工作面推进不断增加并最终趋于稳定,当工作面推进到200 m时,顶板破坏高度约为80 m,工作面涌水量约为33 m3/min,与实测数据基本吻合;随着开采的进行,在采空区后方煤层的支承压力峰值位置几乎不变,在工作面前方形成的支承压力峰值极值点位置不断前移,应力集中系数约为2.0;在司马矿薄基岩区,在煤层采厚为5 m、基岩厚度为40 m的条件下,若顶板黏土层厚度大于40 m,将不会发生顶板突水。  相似文献   

15.
为研究大同矿区特厚煤层采出空间大和远距离侏罗系煤层群重叠煤柱共同作用下的强矿压显现机制,采用通用离散元程序(UDEC)数值模拟方法,分析重叠煤柱作用下的工作面采动应力规律。应用高精度微震监测技术,得到侏罗系煤层群开采影响下的综放工作面覆岩运动与矿压显现的关系。研究表明,工作面回采至侏罗系煤柱对应区域时,工作面超前支承压力比在非煤柱区域提高了25%~33%;侏罗系煤柱重叠区域,在"煤柱-覆岩联动"和"煤柱-采动应力耦合"共同作用下,工作面矿压显现更为强烈;在临近采空区和侏罗系覆岩共同作用下,沿空巷道矿压显现强烈。工作面开采扰动、临近采空区覆岩运动和侏罗系重叠煤柱的耦合作用,是石炭系综放工作面矿压显现剧烈的根本原因。用提出的基于地面钻孔压裂重叠煤柱弱化的强矿压显现顶板控制技术,可削弱重叠煤柱对工作面开采的影响,减轻特厚煤层综放开采采场矿压的显现强度。  相似文献   

16.
确定开采下限,对高突危险水体上煤层的安全开采具有十分重要的意义。本文基于肥城矿区地质条件,用FLAC3D软件,对开采煤层下伏岩层移动变形规律进行了深入研究,对煤层底板三带范围进行了初步确定;同时,从不同方面对煤层底板开采破坏深度进行了理论计算。根据突水系数、导水带深度、导升带高度和经验数据,确定出正常条件下带压开采的下限(-720m)以及安全措施条件下(底板预注浆处理等)的带压开采下限(-850m)。依据开采下限,对带压开采条件进行了分析,初步形成了高突危险水体上煤层带压开采的分区分类,划分了"开采相对安全区(安全开采区、次安全开采区、条件安全开采区)、深部突水危险区、构造突水危险区",为确定安全开采技术与工艺奠定了理论基础。  相似文献   

17.
为研究煤炭地下气化过程中覆岩的运移规律,以乌兰察布煤炭地下气化试验区工程地质条件为研究背景,首先进行了高温下煤层顶板的物理力学特性测试,获得了不同温度下岩体(粉砂岩、泥岩、细砂岩、粗砂岩、砂质泥岩)的比热容、导热系数、单轴抗压强度及弹性模量;其次建立了相似材料物理模型,分析了燃空区覆岩运移规律。结果表明:在100~1 000℃内,随温度升高比热容及导热系数呈现下降趋势,而在100~750℃内,随温度升高单轴抗压强度呈现增大趋势;乌兰察布煤层气化时,覆岩运移规律与井工开采类似,具有初次来压及周期来压特征,初次来压步距为42 m;亦存在明显的三带分布,即冒落带、垮落带和弯曲下沉带,导水裂隙带高度为28 m;覆岩运移过程中对燃气管亦产生较大的影响,其中1#燃气管在煤层顶板上方26~28 m处受到的水平应力最大,为最易变形断裂位置;在现场用钻孔探测法进行验证,得出导水裂隙带的高度为31.21 m,与相似模拟试验得出的数据吻合,证明了相似材料物理模型的合理性。  相似文献   

18.
通过在公篓矿充分采动、沉降稳定后的采空区地面施工钻孔,对采空区上覆岩层的导水性进行观察,测试和分析研究,确定导水裂隙带高与煤层采高的关系,计算公篓矿水体下采煤的最小防水安全煤岩柱尺寸,为右江河底下采煤提供可靠依据。对地层条件相似的矿山开展水体下采煤工作具有特别重要的参考意义。  相似文献   

19.
为深入研究极近距离煤层综放开采工作面覆岩“两带”的动态发育规律,采用理论推导、数值模拟和现场实测相结合的方法,分析袁店一矿824工作面覆岩“两带”的裂隙演化特征。结果表明:从岩层层向拉伸率角度,研究上覆岩层垮落带和导水裂隙带的垮落程度,考虑角度影响推导出岩层弯曲下沉边缘段变形前后的长度计算公式,根据覆岩的碎胀特征计算各岩层的最大下沉量,预测垮落带和裂隙带的范围分别为30.2~41.2 m和70.7~78.2 m;采用3DEC数值模拟分析该矿824工作面开挖后上覆岩层垮落的基本形态和裂隙分布规律,结合其应力、位移云图和监测线位移曲线的分布特征,得出垮落带和裂隙带的高度分别为32.50 m和77.25 m;采用分布式光纤应变监测系统,监测工作面前方80 m处上部顶板的受力情况,得出受采动影响的光纤应变呈起伏变化,且应变分布与地层岩性存在对应关系,得出垮落带高度约30.4 m,裂隙带高度约74.8 m,验证采用层向拉伸率和覆岩碎胀性2个方面来预测工作面覆岩“两带”高度的合理性,可为类似方面的研究与施工提供相应的技术依据。  相似文献   

20.
为了解决新源煤矿在近距离煤层群赋存条件下采用倾向穿层钻孔抽采邻近煤(岩)层卸压瓦斯,抽采瓦斯浓度低,抽采率不达标,回采工作面上隅角瓦斯超限严重等问题。通过采用UDEC软件模拟采动覆岩移动破坏规律,获得开采2号煤层时上覆岩层裂隙带范围9~16m,确定倾向穿层钻孔合理布孔参数,钻孔倾角:21°~26°,孔深:44~47m。经在2219工作面试验考察,与原始参数钻孔抽采效果相比,钻孔平均瓦斯抽采浓度增加6倍多,抽采纯量增加15倍多,有效抽采距离增加3倍多,倾向穿层钻孔抽采率从20%提高到56.8%,回采期间上隅角瓦斯浓度能够控制在0.5%以下,保障了矿井安全生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号