首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Comparing resource pulses in aquatic and terrestrial ecosystems   总被引:3,自引:0,他引:3  
Nowlin WH  Vanni MJ  Yang LH 《Ecology》2008,89(3):647-659
Resource pulses affect productivity and dynamics in a diversity of ecosystems, including islands, forests, streams, and lakes. Terrestrial and aquatic systems differ in food web structure and biogeochemistry; thus they may also differ in their responses to resource pulses. However, there has been a limited attempt to compare responses across ecosystem types. Here, we identify similarities and differences in the causes and consequences of resource pulses in terrestrial and aquatic systems. We propose that different patterns of food web and ecosystem structure in terrestrial and aquatic systems lead to different responses to resource pulses. Two predictions emerge from a comparison of resource pulses in the literature: (1) the bottom-up effects of resource pulses should transmit through aquatic food webs faster because of differences in the growth rates, life history, and stoichiometry of organisms in aquatic vs. terrestrial systems, and (2) the impacts of resource pulses should also persist longer in terrestrial systems because of longer generation times, the long-lived nature of many terrestrial resource pulses, and reduced top-down effects of consumers in terrestrial systems compared to aquatic systems. To examine these predictions, we use a case study of a resource pulse that affects both terrestrial and aquatic systems: the synchronous emergence of periodical cicadas (Magicicada spp.) in eastern North American forests. In general, studies that have examined the effects of periodical cicadas on terrestrial and aquatic systems support the prediction that resource pulses transmit more rapidly in aquatic systems; however, support for the prediction that resource pulse effects persist longer in terrestrial systems is equivocal. We conclude that there is a need to elucidate the indirect effects and long-term implications of resource pulses in both terrestrial and aquatic ecosystems.  相似文献   

2.
Complex marine ecosystems contain multiple feedback cycles that can cause unexpected responses to perturbations. To better predict these responses, complicated models are increasingly being developed to enable the study of feedback cycles. However, the sparseness of ecological data often limits the direct empirical parameterization of all model parameters. Here we use a Bayesian inverse analysis approach to synthesize empirical data and ecological theory derived from published studies of a coral atoll's enclosed pelagic ecosystem (Takapoto Atoll, French Polynesia). We then use the estimates of flux magnitudes to parameterize probabilistic compartment models with two forms of heterotrophic consumption: (1) “bottom-up” donor-controlled heterotrophic consumption and (2) “top-down” mass-action heterotrophic consumption. We explore how the flux magnitudes affect the ecosystem's stability properties of resilience, reactivity, and resistance under both assumptions for heterotrophic consumption. The models suggest that the microbial uptake of dissolved organic carbon (DOC) regulates the long term rate of return to steady state following a temporary or pulse perturbation (resilience), and the cycling of carbon between abiotic pools and heterotrophic compartments regulates the short-term response (reactivity). In the bottom-up process model, the sensitivity of steady state masses following a sustained or press perturbation (resistance) is highest for the DOC pool following a sustained change to the microbial uptake rate of DOC. Further, a change in the microbial uptake of DOC propagates through the ecosystem and affects the steady state values of zooplankton. The analysis suggests that the food web is highly dependent on the recycling between the abiotic and biotic carbon pools, particularly as mediated by the microbial consumption of DOC, and this recycling determines how the ecosystem responds to perturbations.  相似文献   

3.
Judd KE  Crump BC  Kling GW 《Ecology》2006,87(8):2068-2079
An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities. Bacterial production was measured, and DOM chemistry and bacterial community composition (using denaturing gradient gel electrophoresis of 16S rRNA genes) were characterized following incubations. Bacterial production, dissolved organic carbon (DOC)-specific bacterial production, and DOC consumption were greatest in mesocosms fed soil water DOM; soil water DOM enhanced lake and stream bacterial production by 320-670% relative to lake and stream controls. Stream DOM added to lake bacteria depressed bacterial production relative to lake controls in the early season (-78%) but not the mid-season experiment. Addition of upslope DOM to stream and lake bacterial communities resulted in significant changes in bacterial community composition relative to controls. In four of five DOM treatments, the bacterial community composition converged to the DOM source community regardless of the initial inoculum. These results demonstrate that shifts in the supply of natural DOM were followed by changes in both bacterial production and community composition, suggesting that changes in function are likely predicated on at least an initial change in the community composition. The results indicate that variation in DOM composition of soil and surface waters influences bacterial community dynamics and controls rates of carbon processing in set patterns across the landscape.  相似文献   

4.
Our view of the effects of temperature on bacterial carbon fluxes in the ocean has been confounded by the interplay of resource availability. Using an extensive compilation of cell-specific bacterial respiration (BRi) and production (BPi), we show that both physiological rates respond to changing temperature in a similar manner and follow the predictions of the metabolic theory of ecology. Their apparently different temperature dependence under warm, oligotrophic conditions is due to strong resource limitation of BP, but not of BRi. Thus, and despite previous preconception, bacterial growth efficiency (BGE = BPi/[BPi + BRi]) is not directly regulated by temperature, but by the availability of substrates for growth. We develop simple equations that can be used for the estimation of bacterial community metabolism from temperature, chlorophyll concentration, and bacterial abundance. Since bacteria are the greatest living planktonic biomass, our results challenge current understanding of how warming and shifts in ecosystem trophic state will modify oceanic carbon cycle feedbacks to climate change.  相似文献   

5.
Svensson JR  Lindegarth M  Pavia H 《Ecology》2010,91(10):3069-3080
Physical and biological disturbances are ecological processes affecting patterns in biodiversity at a range of scales in a variety of terrestrial and aquatic systems. Theoretical and empirical evidence suggest that effects of disturbance on diversity differ qualitatively and quantitatively, depending on levels of productivity (e.g., the dynamic equilibrium model). In this study we contrasted the interactive effects between physical disturbance and productivity to those between biological disturbance and productivity. Furthermore, to evaluate how these effects varied among different components of marine hard-substratum assemblages, analyses were done separately on algal and invertebrate richness, as well as richness of the whole assemblage. Physical disturbance (wave action) was simulated at five distinct frequencies, while biological disturbance (grazing periwinkles) was manipulated as present or absent, and productivity was manipulated as high or ambient. Uni- and multivariate analyses both showed significant effects of physical disturbance and interactive effects between biological disturbance and productivity on the composition of assemblages and total species richness. Algal richness was significantly affected by productivity and biological disturbance, whereas invertebrate richness was affected by physical disturbance only. Thus, we show, for the first time, that biological disturbance and physical disturbance interact differently with productivity, because these two types of disturbances affect different components of assemblages. These patterns might be explained by differences in the distribution (i.e., press vs. pulse) and degree of selectivity between disturbances. Because different types of disturbance can affect different components of assemblages, general ecological models will benefit from using natural diverse communities, and studies concerned with particular subsets of assemblages may be misleading. In conclusion, this study shows that the outcome of experiments on effects of disturbance and productivity on diversity is greatly influenced by the composition of the assemblage under study, as well as on the type of disturbance that is used as an experimental treatment.  相似文献   

6.
水体生态系统对不同浓度水平苯酚污染的急性毒性响应   总被引:1,自引:0,他引:1  
针对浙江某地苯酚泄漏事件,结合实地监测和实验室研究,探索苯酚的水体污染化学行为对水体生态系统的影响和急性毒性效应.本研究选取水生生态系统中明亮发光杆菌T3、优势藻四尾栅藻Scenedesmus quadricauda以及模式鱼斑马鱼Brachydanio rerio为研究对象,探索水体中生产者、消费者及分解者等整个生态系统对不同苯酚浓度胁迫下的生态响应.结果表明,水生生物对苯酚污染浓度的生态响应差异显著,虽然苯酚对发光细菌、四尾栅藻及鱼体都具有一定的毒性影响,但四尾栅藻抑制率与苯酚浓度之间并没有良好的线性关系.发光细菌的相对发光率与苯酚浓度的关系表明,0.2—25 mg.L-1苯酚浓度对水体会产生低毒作用,而30—100 mg.L-1苯酚浓度对水体会产生中毒作用.苯酚对四尾栅藻的影响主要表现为光合作用的暗反应破坏,高浓度苯酚处理组中四尾栅藻会将残余苯酚浓度作为自身碳源而短暂地促进其生长.斑马鱼在苯酚浓度高于15 mg.L-1时,会发生体重下降、死亡率上升、呼吸急促、游动迅速以及导致水质变坏等现象,并且在100 mg.L-1苯酚浓度处理下,鱼体内富集大量苯酚,通过食物链进而对人类健康产生影响.  相似文献   

7.
Flombaum P  Sala OE 《Ecology》2012,93(2):227-234
Several experiments have shown that aboveground net primary productivity increases with plant species richness. The main mechanism proposed to explain this relationship is niche complementarity, which is determined by differences in plant traits that affect resource use. We combined field and laboratory experiments using the most abundant species of the Patagonian steppe to identify which are the traits that determine niche complementarity in this ecosystem. We estimated traits that affect carbon, water, microclimate, and nitrogen dynamics. The most important traits distinguishing among species, from the standpoint of their effects on ecosystem functioning, were potential soil nitrification, rooting depth, and soil thermal amplitude. Additionally, we explored the relationship between trait diversity and aboveground net primary production (ANPP) using a manipulative field experiment. ANPP and the fraction of ANPP accounted for by trait diversity increased with number of traits. The effect of trait diversity decreased as the number of traits increased. Here, the use of traits gave us a mechanistic understanding of niche complementarity in the Patagonian steppe.  相似文献   

8.
污染源汇入和闸坝拦截等因素能够影响城市河流水生生态环境质量,主要表现在群落结构和功能的改变。分别于春季、夏季和冬季3个季节对北运河干流的10个点进行水样采集,通过16S rDNA末端限制性片段长度多态性(T-RFLP)分析手段研究了北运河河道水体浮游细菌的群落结构,以揭示流域微生物多样性以及浮游细菌群落与水质因子的响应关系。共得到47种不同的片段,其中218bp片段是优势菌。T-RFs片段计算微生物多样性指数和均匀度指数结果表明,目前北运河水体生态结构已经较为脆弱。冬季与其他季节的群落组成有明显差别,夏季细菌丰度高于冬季。通过CANOCO软件分析浮游细菌群落结构与水质指标的空间特点,发现水体流动性降低、支流汇入和污染源的汇入都会引起微生物群落结构在空间上的改变;环境因子与微生物群落组成的相关性研究表明,总磷、溶解性有机碳(DOC)和温度对北运河微生物群落结构影响较大。  相似文献   

9.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

10.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

11.
The release of dissolved organic carbon (DOC) from phytolankton during photosynthesis, and the utilization of this carbon by planktonic bacteria, was studied using 14CO2 and selective filtration. Natural sea water samples from a coastal area of the Northern Baltic Sea were incubated in the laboratory for detailed studies, and in situ for estimation of annual dynamics. In a laboratory incubation (at +1°C) the concentration of 14C-labelled dissolved organic carbon increased for about 2 h and then reached a steady state, representing about 0. 1% of the total DOC. Labelled organic carbon in the phytoplankton and bacterial fractions continued to increase almost linearly. The continuous increase in the bacterial fraction is thought to represent almost instantaneous utilization of the DOC released from the phytoplankton during photosynthesis. As an annual average, in 4 h in situ incubations, about 65% of the labelled organic carbon was found in the phytoplankton fraction (>3 m), about 27% in the bacterial fraction (0.2 to 3 m) and the remaining 8% as DOC (<0.2 m). Large variations in these percentages were recorded. The measured annual primary production was 93 g C m-2 (March to December), and the estimated bacterial production due to phytoplankton exudates 29 g C m-2. This represents a release of DOC of about 45% of the corrected annual primary production of 110 g C m-2 (assuming a bacterial growth efficiency of 0.6).  相似文献   

12.
Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.  相似文献   

13.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

14.
区域能源碳足迹计算模型比较研究——以湖北省为例   总被引:1,自引:0,他引:1  
能源消费排放是最主要的碳排放来源,研究能源碳足迹重要理论和现实意义。如何准确计算和表征能源碳足迹的大小成为该研究领域的重要问题。在文献回顾的基础上,文章总结了3种目前应用较广泛的计算区域能源消费碳足迹的方法和模型,它们分别是碳汇法、净初级生产力改进模型和净生态系统生产力改进模型。分别介绍了其计算公式、输入参数和计算过程。以湖北省1998-2009年能源消费碳足迹的计算为例,分别用这几种方法计算了能源消费碳足迹的总量和人均碳足迹。得到的主要结论有:研究区域能源消费碳排放量增长较快,3种方法和模型计算得到的碳足迹总量和人均量从时间序列上看,整体变化趋势一致,碳足迹亦呈现快速增长。但3种模型计算出的碳足迹大小差异较大,碳汇法模型足迹最大,净生态系统生产力改进模型次之,净初级生产力改进模型结果最小,并且碳汇法的计算结果明显大于其他两种模型。计算结果差异的原因在于,传统碳汇法模型只考虑林地的碳吸收能力,忽略了区域其他用地类型的碳吸收能力。净初级生产力改进模型考虑了各种用地类型的吸收能力,但从生态系统来说忽略了异氧呼吸的碳释放,高估了区域的碳吸收能力。几种模型都运用了固定值或者平均统计量,未能考虑地域差异,同时未考虑各统计量随时间和气候等变化而变化的可能,存在一定的不合理性,这也是今后研究值得深人研究的方向。  相似文献   

15.
流域水生态功能区划及其关键问题   总被引:5,自引:0,他引:5  
作为流域生态系统管理和水资源保护的重要手段,如何科学合理地开展流域水生态功能区划,已成为世界各国可持续发展所面临的关键挑战之一.本文立足我国流域综合管理的特点和发展趋势,针对我国现行水功能区划的问题,结合国外流域水生态区划的经验,提出了基于流域生态学、地域分异规律、生态系统健康与生态完整性、流域生态系统管理等理论基础的,以恢复流域持续性、完整性生态系统健康为目标,反映流域水陆耦合体在不同时空尺度景观异质性的流域水生态功能区划及其原则,重点分析了流域水生态系统的空间格局、生态过程以及动态演替等3个区划的关键问题,并提出了区划的方法,以期为我国流域水生态功能区划和流域生态系统管理提供战略层次的科学依据.  相似文献   

16.
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.  相似文献   

17.
Greenwood MJ  McIntosh AR 《Ecology》2008,89(6):1489-1496
Landscape-driven processes impact the magnitude and direction of cross-ecosystem resource subsidies, but they may also control consumers' numerical and functional responses by altering habitat availability. We investigated effects of the interaction between habitat availability and subsidy level on populations of a riparian fishing spider, Dolomedes aquaticus, using a flood disturbance gradient in the Waimakariri River catchment, New Zealand. D. aquaticus predominantly eat aquatic prey as they hunt from the water surface. However, D. aquaticus biomass peaked at rivers with intermediate flood disturbance, rather than at less flood-prone rivers where the biomass of aquatic insect prey was markedly higher. Flooding positively influenced spider habitat quality, and an experimental manipulation at stable rivers indicated that unembedded cobbles, preferred D. aquaticus habitat, were a limiting factor, preventing response to the increased prey resource at stable sites. Potential terrestrial prey abundance was low, did not vary across the disturbance gradient, and is likely to have been a much smaller component of the fishing spiders' diet than aquatic insect prey. Thus landscape-driven factors not only controlled the magnitude of resource subsidies, but also influenced the ability of consumers to respond to them by altering the physical nature of the ecosystem boundary.  相似文献   

18.
廖静秋  文航  苏玉  曹晓峰  黄艺 《生态环境》2012,(7):1277-1284
流域水生态系统具有物质循环、能量流动、群落代谢等服务功能,由于人类活动干扰等因素,水生态系统受到破坏,服务功能的发挥受到抑制。太子河作为中国七大水系之一的辽河支流,其水生态系统健康状况同样由于社会、自然等胁迫驱动力原因受到影响。提出了一套流域水生态系统生境安全识别方法,并以太子河次流域本溪段为案例对方法的可行性进行研讨。采用水文、河道、河岸带和水质4个生境安全指标,分别对研究区的5个评价单元水生态系统生境进行安全评估,做出问题识别,找出水生态系统处于不同健康状态的原因,并确定优先修复项目,便于流域管理。通过研究得到观音阁水库坝区没有优先修复项目,小夹河区、老官砬子-观音阁水库坝区、大峪沟入河口-老官砬子区、兴安市界-大峪沟入河口区优先修复项目分别为河道、河道和河岸带、河道、水质,生境安全识别方法具有一定的可行性。  相似文献   

19.
The estuarine macroalga Enteromorpha prolifera was collected from Coos Bay, Oregon, USA during 1981, and its release of photosynthate as dissolved organic carbon (DOC) was studied using 14C as a tracer. During photosynthesis in 30 S sea water, with a fixation rate averaging 7.37 mg C g-1 dry wt h-1, release ranged from 0.13 to 0.57 mg C g-1 dry wt h-1 and from 1.65 to 6.23% of total fixed carbon. Release of DOC appears to be linear with time over 3 h. As exposed algae become increasingly desiccated, their photosynthetic rates decline dramatically, but upon reimmersion the highly desiccated algae lose a larger fraction of their fixed carbon than the slightly desiccated algae. This loss comes in a pulse release of DOC over the initial 15 min, followed by declining release rates. The pulse loss due to rainfall is 5 times greater than that due to tidal resubmergence, and may briefly exceed the prior photosynthetic rate. Although lowering the salinity from 30 to 5 does not substantially alter photosynthetic rates, it does increase the DOC release range up to 1.02 mg C g-1 dry wt h-1 and 16.10% of fixed carbon. Heterotrophic microbes from the algal habitat readily use the available DOC at about 15% h-1.  相似文献   

20.
With large influx of freshwater that decreases sea-surface salinities, weak wind forcing of <10 m s−1 and almost always warm (>28°C) sea-surface temperature that stratifies and shallows the mixed layer leading to low or no nutrient injections into the surface, primary production in Bay of Bengal is reportedly low. As a consequence, the Bay of Bengal is considered as a region of low biological productivity. Along with many biological parameters, bacterioplankton abundance and production were measured in the Bay of Bengal during post monsoon (September–October 2002) along an open ocean transect, in the central Bay (CB, 88°E) and the other transect in the western Bay (WB). The latter representing the coastal influenced shelf/slope waters. Bacterioplankton abundances (<2 × 109cells l−1) were similar to those reported from the HNLC equatorial Pacific and the highly productive northern Arabian Sea. Yet, the thymidine uptake rates along CB (average of 1.46 pM h−1) and WB (average of 1.40 pM h−1) were less than those from the northwestern Indian Ocean. These abundances and uptake rates were higher than those in the oligotrophic northwestern Sargasso Sea (<7 × 108 cells l−1; av 1.0 pM h−1). Concentrations of chlorophyll a (chl a), primary production rates and total organic carbon (TOC) were also measured for a comparison of heterotrophic and autotrophic production. In the WB, bacterioplankton carbon biomass equaled ∼ 95% of chl a carbon than just 31% in the CB. Average bacterial:primary production (BP:PP) ratios accounted for 29% in the CB and 31% in the WB. This is mainly due to lower primary productivity (PP) in the WB (281 mg C m−2 d−1) than in the CB (306 mg C m−2 day−1). This study indicates that bacteria–phytoplankton relationship differs in the open (CB) and coastal waters (WB). Higher abundance and contrastingly low bacterial production (BP) in WB may be because of the riverine bacteria, brought in through discharges, becoming dormant and unable to reproduce in salinities of 28 or more psu. Heterotrophic bacteria appear to utilize in situ DOC rather rapidly and their carbon demand is ∼50% of daily primary production. It is also apparent that allochthonous organic matter, in particular in the western Bay, is important for meeting their carbon demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号