首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
综述了吸附法和吸附法耦合其他技术处理垃圾渗滤液的研究进展,针对渗滤液中有机物的去除,重点比较了各种吸附剂的吸附性能,并做了展望。  相似文献   

2.
对吸附法以及垃圾卫生填埋场渗滤液的特征作了简要的介绍,同时对活性炭、焦炭、粉煤灰、建筑垃圾及粘土等吸附材料处理垃圾渗滤液作了简要的综述。  相似文献   

3.
分别以黏土和粉煤灰作为吸附剂,研究单一材料下吸附时间、吸附剂投加量和渗滤液初始pH对农村生活垃圾渗滤液吸附效能的影响及吸附机理。综合考虑去除效果、运行成本及可操作性,选择吸附时间为180 min、吸附剂投加量为50 g/L、渗滤液初始pH为自然值(7.5~8.0)作为实际运行工况。结果表明:黏土对农村生活垃圾渗滤液中化学需氧量(CODCr)、氨氮(NH3-N)、总氮(TN)、总磷(TP)的去除率分别为25.58%、14.87%、41.63%和62.25%,粉煤灰为33.01%、18.18%、22.07%和60.46%;黏土对重金属Cr、As、Cd、Ni和Pb的去除率分别为13.04%、43.34%、60.24%、47.52%和61.77%,粉煤灰为10.53%、31.52%、84.30%、65.73%和68.65%。黏土和粉煤灰对渗滤液中污染物的等温吸附较符合Freundlich模型,化学吸附在多种吸附作用中占主导作用。  相似文献   

4.
垃圾渗滤液的吸附净化实验研究   总被引:5,自引:0,他引:5  
对不同高度的煤灰和土壤进行垃圾渗滤液的吸附净化试验.证明吸附法对渗滤液中有机物具有很好的去除能力;煤灰和土壤高度、有机负荷、水力负荷及配水次数等因素均对净化能力有一定的影响。  相似文献   

5.
泥炭预处理吸附垃圾渗滤液中的COD   总被引:1,自引:0,他引:1  
通过对泥炭改性去除水中COD进行了试验研究。探讨了磷酸、硫酸、盐酸、硝酸和氢氧化钠对COD去除效果的影响和吸附机理。结果表明,在酸、碱改性过程中,用5%的硫酸改性的泥炭去除COD的效果最佳,改性泥炭用量为每10 g/100 mL,吸附时间为60 min,pH为10的试验条件下,COD的去除率为68.5%以上,磷酸较硫酸次之,去除率为55%左右,而盐酸和硝酸较差分别为45%和38%,氢氧化钠为40%左右。并对其吸附机理进行了研究,其吸附等温线符合Freundlich型。通过扫描电镜观察泥炭表面的结构,硫酸改性后的泥炭表面结构比较粗糙,比表面积最大,与实验结果相吻合。用原子吸收法对泥炭处理前后的水样进行比较,表明泥炭对重金属也有很好的去除率。本研究为泥炭利用提供了可借鉴的思路。  相似文献   

6.
NDA-150 树脂对垃圾渗滤液生物处理出水的吸附   总被引:2,自引:0,他引:2       下载免费PDF全文
以NDA-150 树脂为吸附剂,研究了该树脂对垃圾渗滤液生物处理出水中有机物的吸附特性.结果表明,该树脂的吸附率受溶液的pH值影响较大,其最优pH 值为2.0.静态吸附动力学显示,树脂初期吸附速度较快,24h 内可使最终出水的COD 满足直排标准(<100 mg/L);72h基本达到吸附平衡.吸附过程符合Freundlich 方程,吸附放热,且为促进吸附过程.动态吸附脱附试验表明,1.000gNDA-150 树脂的COD 吸附量为175.6mg/g 树脂,且脱附峰比较集中,当NaOH 脱附液体积为120mL 时,有机物脱附率为99.8%.  相似文献   

7.
采用Fenton法氧化处理中年垃圾渗滤液生化出水,对影响双氧水利用率及COD去除率的各种因素,包括初始pH,H2O2/Fe^2+比率,双氧水投加量、催化剂类型及反应时间等进行了研究。结果表明:Fenton法氧化处理中年垃圾渗滤液生化出水的最佳条件是:初始pH值为7,H2O2/Fe^2+比率为4:1,双氧水的经济投加量为0.05mol/L,反应时间为3.5h。此时,混合催化剂可提高双氧水的利用率,双氧水利用率为153.9%,COD去除率可达80.5%,处理出水可达到GB16689—1997((生活垃圾填埋污染控制标准》二级标准(COD≤300mg/L)。  相似文献   

8.
城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,处理难度很大。对投加特殊菌种处理垃圾渗滤液进行了试验研究,提出了相关的运行参数,并与普通活性污泥法进行了比较。发现特殊菌种的投加大大提高了垃圾渗滤液中污染物的去除效果。  相似文献   

9.
文章以粘土和壤土为实验材料,研究两种不同土壤对渗滤液中COD、重金属含量的吸收净化效果。结果表明:相同高度的粘土比壤土吸附效果好,同一种土壤对pH、COD、重金属的去除效果随土层厚度的增加而增强。  相似文献   

10.
垃圾渗滤液处理技术进展   总被引:1,自引:0,他引:1  
综述了国内外垃圾渗滤液的主要处理方法,分析了各法的优缺点,并对我国垃圾渗滤液的处理工艺研究提出建议。  相似文献   

11.
利用粉煤灰处理生活污水的试验研究   总被引:1,自引:1,他引:0  
以火电厂贮灰场粉煤灰为吸附剂,以生、活污水为吸附对象,通过间歇吸附试验,分析了各因素对粉煤灰吸附性能的影响,并找出了粉煤灰对生活污水中化学耗氧物质(COD)的吸附规律。  相似文献   

12.
对粉煤灰去除水中色度的可行性进行了试验,得出了最佳反应条件:甲基橙废水浓度:3.15mg/L、碱性改性粉煤灰投加量=36g/L、反应时间=20min、pH=6-8、反应温度=室温时,脱色率最高,可达98.6%左右。  相似文献   

13.
脱炭粉煤灰修复公路路面应用技术研究   总被引:7,自引:0,他引:7  
研究了利用脱炭粉煤灰和高效早强减水剂的“双掺”技术 ,进行了公路混凝土路面的修复技术研究 ;结果表明脱炭粉煤灰用于混凝土路面替代水泥量可达 2 0 % ,较好地解决了公路路面工程中直接利用粉煤灰所存在的主要问题。  相似文献   

14.
通过试验,就矸石电厂粉煤灰提取铁、铝并将二者有效分离的方法进行了探讨;结合后续制备微晶玻璃的工艺,提出了相关的技术要求,以保证整个研究的经济性和完整性.研究结果表明:二次沉淀法有效地实现了铁、铝分离,为微晶玻璃的制备创造了条件,且工艺简单,控制点少,可操作性强.  相似文献   

15.
粉煤灰对矿井水中重金属离子的吸附研究   总被引:11,自引:0,他引:11  
本文通过静态热力学实验的方法,研究了粉煤灰对矿井水中Pb^2+,Zn^2+,Cu62+等重金属离子的吸附性能。着重分析了PH值,吸附时间,粉煤灰活化程度等因素对其吸附能力的影响。  相似文献   

16.
以建筑废弃物粉煤灰砖为吸附材料,经硫酸和盐酸改性研究了粉煤灰砖块粉末(fly ash brick powder,简称FABP)对水体中磷的净化效果,并探究了酸改性种类、投加量、接触时间、p H对磷去除率的影响。结果表明:酸改性后的FABP比表面积显著增大,且表面变得粗糙。硫酸改性粉煤灰砖块粉末(sulfuric acid modified fly ash brick powder,简称S-FABP)对水体中磷有良好的去除效果,当投加量为3.0g时磷去除率达到98.5%,且反应初始的5 min内磷的去除率达92.7%。分析S-FABP去除磷的机理为沉淀反应和吸附反应协同作用的结果,在酸性和碱性条件下有不同的沉淀反应发生。根据Langmuir和Freundlich方程拟合结果,S-FABP对水中磷的吸附等温模型符合Langmuir模型,理论饱和吸附量为7.69 mg/g。  相似文献   

17.
粉煤灰对苯酚废水的吸附研究   总被引:1,自引:0,他引:1  
在静态条件下研究了粉煤灰对苯酚的吸附性能,结果表明:平均粒径29.06μm,孔隙率64.0686%,在吸附时间50min,粉煤灰用量120 g/L,pH=7.45条件下,对75 mL浓度为30 mg/L的苯酚模拟废水,吸附效果最好,可达82.4%。粉煤灰吸附苯酚机理复杂,偏向于单分子层吸附的Langmuir吸附等温线模式:q=0.042Ce/(1+0.095Ce),吸附反应为一级反应,速率方程为lnC=-0.0096t+3.3097(C0=30 mg/L)。  相似文献   

18.
以太原二电厂粉煤灰浸出试验为例,对火电厂粉煤灰长期堆放造成水环境污染的规律进行研究.试验结果表明:粉煤灰水中的酸碱性受灰中 SO3与碱性金属氧化物含量的影响;粉煤灰浸出液 pH值越低,越利于粉煤灰中微量元素的浸出;同时粉煤灰的粒径越小,各元素的浸出浓度较高.  相似文献   

19.
燃料式熔融固化垃圾焚烧飞灰的实验研究   总被引:3,自引:0,他引:3  
在以柴油为燃料的熔融炉中熔融固化垃圾焚烧飞灰,并对固化效果进行检验。进一步探讨了不同环境对飞灰固化效果的影响规律。结果表明飞灰熔融固化后就不再具有浸出毒性的危险废物;酸性(pH≤4.5)和碱性(pH≥11.5)环境对固化效果的影响比较大;潮湿的环境对固化效果无明显影响。  相似文献   

20.
将粉煤灰与Na2CO3按一定的比例混合后焙烧,采用酸碱联合法提取粉煤灰中氧化硅、氧化铝和氧化铁,分析了工艺条件对粉煤灰中氧化物提取率的影响。实验结果表明,从粉煤灰中提取氧化物的最佳条件是:碳酸钠与粉煤灰的比例0.6∶1.0,焙烧温度850℃、盐酸浓度4 mol/L,氢氧化钠浓度2.6 mol/L,浸取时间约6 h。在此条件下得出微细氧化硅、氧化铝、氧化铁的晶体,其平均粒度分别为氧化硅1.107μm,氧化铝1.334μm,氧化铁0.783μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号