首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.  相似文献   

2.
Approximately 20,000 topsoil samples were collected in 25 European Union (EU) Member States (EU-27 except Bulgaria and Romania) with the aim to produce the first coherent pan-European physical and chemical topsoil database, which can serve as baseline information for an EU wide harmonized soil monitoring. The soil sampling was undertaken within the frame of the Land Use/Land Cover Area Frame Survey (LUCAS), a project to monitor changes in the management and character of the land surface of the EU. Soil samples have been analysed for basic soil properties, including particle size distribution, pH, organic carbon, carbonates, NPK, cation exchange capacity (CEC) and multispectral signatures. Preliminary studies show the outstanding potential of the dataset for enhancing the knowledge base on soils in the EU. The current paper provides an introduction to the LUCAS Topsoil 2009 project and provides an example of data applicability for cropland assessment by highlighting initial results for regional and national comparisons.  相似文献   

3.
The effects of land use and soil properties on total and available Cu concentrations in soils were investigated in this study. A total of 276 surface (0-20 cm) soil samples were collected from seven land uses: industrial area, woodland, vegetable field, dry land, paddy field, tea garden and orchard. The total and available (DTPA extractable) Cu concentrations, pH, organic matter, and total nitrogen contents, and cation exchange capacity were measured for each sample. The correlation and ANOVA analyses showed that land use significantly affected total and available Cu concentrations, and the available ratio of soil Cu (available Cu concentration/total Cu concentration). On total Cu concentration, total nitrogen had significant influence in dry land and paddy field, and CEC in garden land; on available Cu concentration, the four measured soil properties showed significant influence only in paddy field; on the available ratio of Cu, pH had significant effect in paddy field and woodland, and CEC in industrial area. Moreover, the relationship between available Cu concentration and soil properties was constructed in different land uses. Spatial analysis of grain Cu using indicator Kriging showed that most of the study areas were in low risk for arable activities, and 7.94% of the study area and 5.10% of the arable land were in high risk probability.  相似文献   

4.
The background levels, variability, partitioning and transport of eleven trace elements-Ag, Al, As, Cd, Co, Cr, Cu, Mn, Pb, Zn and U-were investigated in a mountain range river system (Adour River, France). This particular river system displayed a turbulent hydrodynamic regime, characterized by flash-transient discharge conditions leading to fast shifts in suspended particulate matter (SPM) concentrations as high as two orders of magnitude (12 to 600 mg l(-1)). The distribution of SPM was accurately predicted with a "hysteresis" transport model, indicating that about 75% of the annual solids load was exported within 20 to 40 days. Dissolved and particulate concentrations of most trace elements were low compared to their concentrations in other reference river systems expect for Pb and Cr, associated with historical anthropogenic activities. Although dissolved and particulate metal concentrations were steady for most elements during low and average discharge conditions, significant changes were observed with increasing river discharge. The changes in trace element concentrations in the two compartments was found to induce a partitioning anomaly referred to as the particulate concentration effect. This anomaly was significant for Cr, Mn, Pb, Zn, Cu and organic carbon (p < 0.03). The processes driving this anomaly were possibly linked to the modification and/or increase of colloidal organic and inorganic vectors, suggested by the significant increase of DOC (p < 0.001) and dissolved Al concentrations (p < 0.05) during flood conditions. A complementary process linked to the influence of coarse particles of low complexation capacity and transported mainly during high discharge may also effect trace element concentrations. Annual metal fluxes transported by this river system were estimated using the hysteresis SPM model with consideration of these fate processes. Metals in the Adour River system are primarily exported into the Bay of Biscay (Atlantic Ocean).  相似文献   

5.
Five methods for aluminium fractionation used in different laboratories in Norway and Finland were compared using six control, 75 soil water and 10 lake water samples. Different fractionation principles [cation exchange, formation of the Pyrocatechol Violet (PCV) or quinolin-8-ol (oxine) complex], types of cation exchanger [Amberlite (Na/H) or Bond Elut (H)], reaction time (from 2.3 s), flow systems (flow injection analysis or segmented flow) and determination principles (molecular absorption spectrometry or ICP-AES) were tested. Determination of the 'labile' fraction was strongly dependent on the method used and the largest differences were observed between the ICP-AES method with cation exchange (Bond Elut H form) and the 'quickly reacting' method (oxine, 2.3 s). Different flow systems, both using cation exchange and determination of the PCV complex but with different reaction times and an extra acidification step, resulted in large differences in the 'reactive' and 'non-labile' fractions determined. However, the determination of the labile fraction gave similar results with both these methods. The two different types of cation exchanger used (with and without pH buffering and with different counter ions) in the ICP-AES methods resulted in differences, mainly because of a smaller 'non-labile' fraction in the non-buffered system. The two flow injection systems (oxine and PCV complexation) showed common trends, which may be connected with the short reaction times used. Comparison with theoretical equilibrium calculations using the model ALCHEMI suggested that the best correlation for the determination of the 'labile' fraction were obtained with the ICP-AES method with an Amberlite column.  相似文献   

6.
Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20–30 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (≥4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees ≥100 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988–99 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.  相似文献   

7.
The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca2+, K+, Na+), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca2+, and K+ values significantly increased, whereas Na+, total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na+ values increased, whereas Ca2+ concentration decreased through time on the control plot. Soil pH, total P, K+, and CEC did not show significant changes through time on the control plot.  相似文献   

8.
Different studies have shown that the effect of land use conversion on soil nutrients and soil organic carbon (SOC) is variable, which indicates that more investigations that focus on different specific geographical locations and land use types are required. The objectives of this study were (1) to evaluate the effect of grazing land (GL) conversion into Grevillea robusta plantation and exclosure (EX) on soil nutrients and soil organic carbon (SOC) and (2) to examine the impact of soil organic matter (SOM) on soil nutrients. To achieve these objectives, soil samples were taken from a soil depth of 20 cm (n?=?4) in each of the studied land areas. Each soil sample was analysed in a soil laboratory following a standard procedure. Analysis of variance (ANOVA) and Pearson’s correlation coefficient were used for the data analysis. The result indicated that conversion of GL into EX improved the soil electrical conductivity (EC), exchangeable K, cation exchange capacity (CEC), total N and available P (p?<?0.05), while the exchangeable Mg, SOC, available K and SOM were decreased (p?<?0.05). Conversion of GL into G. robusta improved the soil EC, exchangeable (K, Ca, Mg), CEC, SOC, total N, available K and SOM (p?<?0.05). There was a significant relationship between SOM and available P, total N, SOC and EC. There were no significant relationships between SOM and pH, available K and CEC. Finally, the results indicate that both land uses, established in acidic Nitosols, have variable impacts on soil chemical properties and that G. robusta plantation improved most of the soil nutrients and SOC much better than the EX land use.  相似文献   

9.
The largest uncertainties are associated with estimating the soil organic carbon (SOC) stock because of natural soil variability and data scarcity. Thus, a local spatial geostatistical hybrid approach, the geographically weighted regression kriging (GWRK), was used in the present study to overcome some of these uncertainties. This study was designed to estimate the SOC stock (kg C m(-2)) for the surface 0 to 15 cm depth using the state of Pennsylvania as the study region. A total of 920 soil profiles were extracted from the National Soil Survey Center database and were divided into calibration (80%) and validation (20%) periods. Some soil parameters that include clay content, bulk density (ρ(b)), total nitrogen (TN) content, pH, Ca(2+), Na(+), extractable acidity (EXACID), and cation exchange capacity (CEC) were used as covariates for estimating the SOC stock. These covariates exhibited spatial autocorrelation (Moran's Index, I = 0.62 to 0.89). Further, residuals of geographically weighted regression were spatially autocorrelated, and hence support the use of the GWRK approach. Validation results concluded that the performance of the GWRK approach was the best with the lowest values of root mean square error, mean estimation error and mean absolute estimation error. The estimated SOC stock for the surface 0 to 15 cm depth ranged from 1.41 to 3.94 kg m(-2). Results from this study show that the GWRK captures spatial dependent relationships, and addresses spatial non-stationarity issues, hence this approach improves the estimations of SOC stock.  相似文献   

10.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

11.
This study was aimed to establish background and reference values of total heavy metals in soils from a representative area of Albania (Tirana). Thirty-eight soil samples collected from genetic horizons of major soil types of Tirana were analyzed for important physicochemical properties by standard methods and for total contents of Cd, Cr, Ni, Pb, Zn, and Cu by atomic absorption spectrometer, after extraction with aqua regia. The results showed that the total contents of Cd, Cr, Ni, Pb, Zn, and Cu in surface horizons varied widely with respective mean values of 0.3 (??0.6), 174.2 (??63.7), 305.9 (??133.0), 19.7 (??12.4), 95.5 (??26.3), and 42.7 (??6.8) mg/kg. The highest metal contents were found in two soils developed in limestone. The depth distribution of metals showed a tendency for accumulation of Cd and Pb in the surface horizons of three soils, suggesting that these metals partially come from anthropogenic inputs. Correlation analysis indicated that the metal contents of soils were controlled by soil properties, including pH, CaCO3, clay, organic matter, cation exchange capacity, and Fe oxides. The background values (given as the 90th percentile) were much higher than those reported in the literature, showing that the levels of respective metals were naturally higher. The total metal contents of some soils were above background levels, suggesting metal pollution. The reference values for all the analyzed metals were quite consistent with those of the Dutch system. The proposed background and reference values can be used to evaluate the soil pollution with these elements.  相似文献   

12.
Models for describing the flushing of DNAPL from contaminated aquifers are developed, and the dependence of the calculated cleanup times on the model parameters is explored. Diffusion transport from isolated DNAPL droplets, from low-permeability porous spherical domains containing distributed DNAPL droplets, and from low-permeability porous planar lamellae containing distributed DNAPL is analyzed, and the resulting expressions then coupled with the equations for advective transport of dissolved VOC by means of natural uniform flow and a system of injection and recovery wells generating a two-dimensional flow field. The models are readily run on currently available microcomputers. The results of computations with the models are consistent with the severe tailing and slow rates of remediation which are generally observed when DNAPLs are removed by flushing.  相似文献   

13.
A 12-month study was carried to assess the seasonal and tidal effects on the physical parameters of river and groundwater, which constitute the major potable water sources in Calabar (Nigeria). The study also included an evaluation of the chemical composition of the different water bodies and their relationship. The results show that there was a significant seasonal effect on dissolved oxygen (DO) and nitrate in groundwater on one hand, and on temperature, redox potential (Eh), and DO in river water on the other. Also, a significant tidal influence exists on DO in both river-and groundwater. Comparison between groundwater and river water show statistically significant difference in EC, TDS, Eh, DO, Na, Cl and NO(3). The significant differences in EC, TDS, Na and Cl are due to tidal flushing. The difference in Eh is due to geology of the area while, NO(3) is as a result of anthropogenic pollution. The concentrations of ions in the river and groundwater for the different seasons and tidal cycles show an inverse relationship, while the river water is generally more concentrated than the groundwater. Using a binary mixing model, estimates show that the degree of mixing of river water and groundwater is low, with values of between 1.93% and 2.76% respectively, in the western and eastern parts of the study area. The study concludes that tidal flushing, anthropogenic effects and oxygen supply during recharge contribute to the shaping of water chemistry in the area.  相似文献   

14.
An approach based on the number of extractions performed over time was applied to study the time necessary to attain equilibrium conditions between the different chemical forms present in two natural soils laboratory-loaded with heavy metals (Cu(II), Pb(II), Zn(II)). The influence of some soil parameters, such as pH value, cation exchange capacity and organic matter content, on the equilibrium time was evidenced both by the different nature of the soils and by the treatment of soils with paper mill sludge. Equilibrium conditions were determined by studying the metal partitioning in the soil on a case by case basis. The behaviour of the three metals was not the same, and the conditions of equilibrium among the different chemical forms were the result of the amount of heavy metals added as well as of the nature of the soil.  相似文献   

15.
The environment is witnessing a downgrade caused by the amelioration of the industrial and agricultural sectors, namely, soil and sediment compartments. For those reasons, a comparative study was done between soil cores and sediments taken from two locations in the Qaraaoun reservoir, Lebanon. The soil cores were partitioned into several layers. Each layer was analyzed for several physicochemical parameters, such as functional groups, particle size distribution, ζ-potential, texture, pH, electric conductivity, total dissolved solids, organic matter, cation exchange capacity, active and total calcareous, available sodium and potassium, and metal content (cadmium, copper, and lead). The metal content of each site was linked to soil composition and characteristics. The two sites showed distinguishable characteristics for features such as organic matter, pH, mineral fraction, calcareous, and metal content. The samples taken toward the south site (Q1), though contain lower organic matter than the other but are more calcareous, showed higher metal content in comparison to the other site (Q2) (average metal content of Q1 > Q2; for Cd 3.8?>?1.8 mg/kg, Cu 28.6?>?21.9 mg/kg, Pb 26.7?>?19 mg/kg). However, the metal content in this study did not correlate as much to the organic matter; rather, it was influenced by the location of the samples with respect to the dam, the reservoir’s hydrodynamics, the calcareous nature of the soil, and the variation of the industrial and agricultural influence on each site.  相似文献   

16.
Increased dissolved inorganic carbon (DIC) enhances the mobilization of metals and nutrients in soil solutions. Our objective was to investigate the mobilization of Al, Ca, Fe, and P in forest soils due to fluctuating DIC concentrations. Intact soil cores were taken from the O and B horizons at the Bear Brook Watershed in Maine (BBWM) to conduct soil column transport experiments. Solutions with DIC concentrations (~20–600 ppm) were introduced into the columns. DIC was reversibly sorbed and its migration was retarded by a factor of 1.2 to 2.1 compared to the conservative sodium bromide tracer, corresponding to a log K D?=???0.82 to ?0.07. Elevated DIC significantly enhanced the mobilization of all Al, Fe, Ca, and P. Particulate (>0.4 μm) Al and Fe were mobilized during chemical and flow transitions, such as increasing DIC and dissolved organic carbon (DOC), and resumption of flow after draining the columns. Calcium and P were primarily in dissolved forms. Mechanisms such as ion exchange (Al, Fe, Ca), ligand- and proton-promoted dissolution (Al and Fe), and ligand exchange (P) were the likely chemical mechanisms for the mobilization of these species. One column was packed with dried and sieved B-horizon soil. The effluent from this column had DOC, Al, and Fe concentrations considerably higher than those in the intact columns, suggesting that these species were mobilized from soil’s microporous structure that was otherwise not exposed to the advective flow. Calcium and P concentrations, however, were similar to those in the intact columns, suggesting that these elements were less occluded in soil particles.  相似文献   

17.
Chemical properties and pollution of water resources were studied in the Chah basin that is located in the Hamadan province, western Iran. Water quality was characterized according to its major constituents and the geological features of the area. Chemical analysis results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes. Groundwater in the studied area is, for the most part, weakly to moderately mineralized and dominated by the calcium (Ca(2+)) and bicarbonate (HCO3-) ions. Within the basin, three different hydrogeochemical facies have been identified: Ca-HCO(3), Ca-SO(4) and Mg-HCO(3). The predominant water type of groundwater samples is the Ca-HCO(3) facies in the recharge area and has a tendency toward Mg-HCO(3) and Ca-SO(4) facies along the direction of water flow. The samples were classified into four groups based on chloride (Cl(-)) and nitrate (NO3-) concentrations and the processes that control water chemistry has been discussed. The results explained the importance of cation exchange, mineral weathering, and anthropogenic activities on groundwater chemistry. It was indicated that cation exchange and Cl-salt inputs are the major process controlling the water chemistry of the low Cl(-) and high [NO3-] (group 2) and high Cl(-) and [NO3-] (group 4). Groundwaters low in NO3- and high in Cl(-) (group 3) and low in NO3- and Cl(-) (group 1) are mainly affected by cation exchange and mineral dissolution. Pollution of groundwaters appeared to be affected by the application of fertilizers, irrigation practice, and solubility of mineral phases and discharge of domestic sewage. Measuring and predicting the mass loading of pollutant to groundwater from specific agricultural systems seems to be useful aids in controlling pollutions in groundwater.  相似文献   

18.
Extraordinary geogenic concentrations of cadmium (Cd) have been reported for some Jamaican soils. However, the bioavailability of the metal in these soils remains unknown. Here, the bioavailability of Cd in selected Jamaican soils was investigated through the determination of total and sequentially extractable concentrations in paired soil–plant (yam; Dioscorea sp.) samples (n?=?24), using neutron activation analysis and atomic absorption spectroscopy as primary analytical techniques. Our results indicate that total soil Cd varied widely (2.2–148.7 mg kg?1), and on average, total extractable Cd accounted for ~55 % of the total soil Cd. The exchangeable and oxidizable species averaged 1.5 and 6.4 % of the total Cd, respectively, and, based on Spearman analysis, are the best predictors of yam Cd. There is also good evidence to suggest that variation in the bioavailability of the metal is in part controlled by the geochemical characteristics of the soils analyzed and is best explained by pH, cation exchange capacity (CEC) and organic matter content (% LOI).  相似文献   

19.
Lead concentration in the surface soils from 31 playgrounds in a ward in Tokyo was measured to examine if paint chips, peeled off from playing equipment installed in the playgrounds, contribute to elevated Pb concentration in the soil of public playgrounds. Lead concentration in the paint chips sampled from playgrounds ranged from 0.003 to 8.9%. Lead concentration in the surface soil ranged from 15.2 to 237 mg kg(-1) (average, 55.5 mg kg(-1)) and higher Pb concentration was found in the soil near painted playing equipment indicating that paint chips from playing equipment contributed to increase soil Pb level of playgrounds in Tokyo. The degree of peeling-off of paint on the surface of playing equipment in the public playground (peeling-off index: POI) positively correlated with Pb concentration in the soil (Spearman rank-correlation coefficient, r = 0.366, p = 0.043). The stronger correlation between Pb concentration and isotope ratios (207Pb/206Pb and Pb conc., r = 0.536, p = 0.002, 208Pb/206Pb and Pb conc. r = 0.600, p < 0.001) than that between Pb and POI indicated that gasoline Pb contributed more to the playground-to-playground variation in soil Pb concentration. It was concluded that both gasoline Pb of the past and paint chips contributed to increased Pb concentration in the surface soil of playgrounds in Tokyo, though the contribution of paint chips is smaller than gasoline Pb.  相似文献   

20.
Ali/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Ali) and Ali/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Ali/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Ali/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Ali/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Ali/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Ali/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B1-, B2- and BC-horizon), inorganic aluminum (Ali) in soil water had more and more important role in regulating Ali/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Ali/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号