首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report presents results of emission measurements of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in the flue gas of seven oil, nine gas, and two wood firing systems under laboratory conditions. The burn rate of the combustion was in the range of the rated useful heat output. Two additional test series varied the amount of combustion air and thus the heat output. The PCDD/PCDF emissions for oil- and gas-fired boilers are in the range of 0.0020-0.0142 ng I-TEQ/m3 (referring to 3% O2 in the dry flue gas). No correlation between the combustion technique and the PCDD/PCDF emissions could be established. In the tests with the wood-fired furnaces PCDD/PCDF concentrations in the flue gas ranging from 0.014 to 0.076 ng I-TEQ/m3 (referring to 13% O2 in the dry flue gas) were found. A significant correlation between the firing rate of the heating insert and the measured PCDD/PCDF concentrations was found. On examination of three typical 2,3,7,8-CDD/CDF congener profiles, a comparable pattern could be observed with natural gas and light fuel oil. The congener distribution for wood combustion is considerably different.  相似文献   

2.
Leclerc D  Duo WL  Vessey M 《Chemosphere》2006,63(4):676-689
This paper discusses the effects of combustion conditions on PCDD/PCDF emissions from pulp and paper power boilers burning salt-laden wood waste. We found no correlation between PCDD/PCDF emissions and carbon monoxide emissions. A good correlation was, however, observed between PCDD/PCDF emissions and the concentration of stack polynuclear aromatic hydrocarbons (PAHs) in the absence of TDF addition. Thus, poor combustion conditions responsible for the formation of products of incomplete combustion (PICs), such as PAHs and PCDD/PCDF precursors, increase PCDD/PCDF emissions. PAH concentrations increased with higher boiler load and/or low oxygen concentrations at the boiler exit, probably because of lower available residence times and insufficient excess air. Our findings are consistent with the current understanding that high ash carbon content generally favours heterogeneous reactions leading to either de novo synthesis of PCDD/PCDFs or their direct formation from precursors. We also found that, in grate-fired boilers, a linear increase in the grate/lower furnace temperature produces an exponential decrease in PCDD/PCDF emissions. Although the extent of this effect appears to be mill-specific, particularly at low temperatures, the results indicate that increasing the combustion temperature may decrease PCDD/PCDF emissions. It must be noted, however, that there are other variables, such as elevated ESP and stack temperatures, a high hog salt content, the presence of large amounts of PICs and a high Cl/S ratio, which contribute to higher PCDD/PCDFs emissions. Therefore, higher combustion temperatures, by themselves, will not necessarily result in low PCDD/PCDFs emissions.  相似文献   

3.
On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of PCDD/PCDF concentration in solid residues has to be derived anew for each individual plant and type of ash.  相似文献   

4.
Ohta M  Oshima S  Osawa N  Iwasa T  Nakamura T 《Chemosphere》2004,54(10):1521-1531
PVDC and three non-chlorinated polymers (PP, PET, and PA) were incinerated at 700-850 degrees C in a laboratory-scale quartz tubular furnace in the presence of HCl (ca. 500 ppm congruent with 0.8 mg/l), and the gas-phase formation of PCDD/Fs, their putative precursors and their homologue profiles were investigated. The addition of HCl had little or no apparent effect on the level of PCDD/Fs formation during PVDC combustion, and their homologue profiles were quite different from those of the three non-chlorinated polymers. With PVDC, O8CDD and particularly O8CDF were by far most prevalent, apparently as a result of the selective formation of the precursors. With each of the three non-chlorinated polymers, combustion at 800 degrees C or higher in the presence of HCl resulted in PCDD/Fs formation at levels equaling or exceeding those observed with PVDC. In trials made with one of them (PP) under the same conditions but using a large polymer sample (100 mg vs 20 mg in all other trials), the level of PCDD/Fs formation was far higher than with the smaller polymer samples, and thus demonstrated the importance of appropriate combustion conditions for polymer incineration.  相似文献   

5.
Both long duration (>6 h) and high temperature (up to 139 °C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient air sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) from a polyurethane foam (PUF) sorbent. Emissions from open burning of simulated military forward operating base waste were sampled using EPA Method TO-9A for 185 min duration using a filter/PUF/PUF in series combination. After a 54 m3 sample was collected, the sampler was removed from the combustion source and the second PUF was replaced with a fresh, clean PUF. An additional 6 h of ambient air sampling (171 m3) was conducted and the second PUF was analyzed to determine if the PCDD/PCDF transferred from the filter and the first PUF. Less than 4.4% of the initial PCDD/PCDF was lost to the second PUF. To assess the potential for blow off of PCDD/PCDF analytes during open air sampling, the mobility of spiked mono- to hepta-PCDD/PCDF standards across a PUF sorbent was evaluated from ambient air temperatures to 145 °C with total volumes between 600 L and 2400 L. Lower molecular weight compounds and higher flow amounts increased release of the spiked standards consistent with vapor pressure values. At 600 L total sampled volume, the release temperature for 1% of the tetra-CDD (the lowest chlorinated homologue with a toxic compound) was 87 °C; increasing the volume fourfold reduced this temperature to 73 °C.  相似文献   

6.
Yasuhara A  Katami T  Shibamoto T 《Chemosphere》2006,62(11):1899-1906
Polyvinylidene chloride (PVDC; polymer of 1,1-dichloroethylene) was combusted with paper in a well-controlled, small-scale incinerator at an average grate temperature of 700 °C, and then dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases were analyzed by gas chromatography/mass spectrometry. PVDC lowered the combustion temperature due to its less flammable character. The amount of total dioxins (PCDDs + PCDFs + coplanar-PCBs) formed in the exhaust gas was 58.0 ng/g of a combustion sample and its toxicity equivalency quantity (TEQ) value was 0.64 ng-TEQ/g. The amount of PCDDs formed in the sample ranged from 2.33 ng/g (Cl8-isomer) to 0.048 ng/g (Cl1-isomer). The lower the number of chloride, the less production of PCDDs. On the other hand, there was no relation between the number of chloride and PCDF formation. The amount of PCDFs formed in the sample ranged from 8.02 ng/g (Cl2-isomer) to 4.46 ng/g (Cl8-isomer). A polyvinylchloride (PVC) sample produced 207 ng/g of total dioxins and a PVDC sample produced 57.4 ng/g of total dioxins when they were combusted under the same conditions. An approximately equal composition of dioxin isomers was formed from PVDC and PVC samples. Paper was found to contribute to PCDF formation when it was combusted with plastics.  相似文献   

7.
Cunliffe AM  Williams PT 《Chemosphere》2007,68(9):1723-1732
The influence of temperature on the levels of PCDD and PCDF remaining in, and desorbed from, a municipal solid waste incinerator flyash was investigated by heating the ash to between 200 and 400 degrees C under a simulated flue gas for four days reaction time. Considerable desorption of PCDD/PCDF from the flyash was seen at 275 degrees C and above. Maximum desorption occurred at 350 degrees C, with the equivalent of nearly eight times the total PCDD/PCDF concentration of the original flyash being lost to the vapour phase per unit mass of initial flyash. The I-TEQ value of the desorbed PCDD/PCDF was considerable, being over fourteen times that of the original flyash at 325 degrees C. The results indicate that formation of PCDD/PCDF on flyash deposits in the post-combustion plant of incinerators can result in the release of significant amounts of PCDD/PCDF to the flue gas stream.  相似文献   

8.
Wang D  Xu X  Zheng M  Chiu CH 《Chemosphere》2002,48(8):857-863
The influences of temperature, air flow and the amount of copper chloride upon the types and amount of the toxic emissions such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) during combustion of polyvinyl chloride (PVC) were investigated. The mechanism concerning the effect of temperature and copper chloride on the PCDD/Fs and PAHs formation was discussed. The results shown that without copper chloride, trace amounts of PCDD/Fs and large amounts of PAHs were found in the emissions from the pure PVC combustion under various combustion conditions. The addition of copper chloride enhanced PCDD/Fs formation, but it seems that the formation of PAHs decreased with increasing amount of copper chloride, and greater total amount of PAHs were produced at the higher temperature under our experimental conditions.  相似文献   

9.
Formation and destruction of PCDD/F inside a grate furnace   总被引:1,自引:0,他引:1  
Hunsinger H  Jay K  Vehlow J 《Chemosphere》2002,46(9-10):1263-1272
Formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/F during the combustion process was investigated experimentally in a pilot plant. All important process steps like the burnout of the fuel bed on the grate, the burnout of the flue gas inside the combustion chamber, the heat recovery in a boiler as well as influences of the fuel composition are described in detail.

High concentrations especially of PCDF are formed during the burnout of the fuel bed. The formation reaction is mainly influenced by the fuel composition and the burnout characteristic of the fuel bed. Fuels with low chlorine and low metal content (Cu) result only in negligible concentrations of PCDD/F.

Under stable combustion conditions characterized by an excellent flue gas burnout PCDD/F will almost be completely destroyed already inside the combustion chamber. “Cold strands” of unburned flue gas (high CO concentrations) caused by disturbed combustion conditions will result in high concentrations of PCDD and especially of PCDF in the raw gas.

A second place of PCDD/F formation is the well-known boiler section. Here fly ash deposits containing residual carbon (mainly soot particles) are the source for the formation reaction. Under stationary effective combustion conditions, they are dominant for PCDD/F concentrations in the raw gas over a very long period of time.

Stationary efficient flue gas burnout (especially soot) together with effective boiler cleaning will guaranty low concentrations of PCDD/F in the flue gas in front of the flue gas cleaning system.  相似文献   


10.
Hart JR 《Chemosphere》2008,72(1):75-78
Emissions and inlet concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) have been measured from a catalytic oxidizer and a thermal oxidizer. The catalyst inlet temperature was 427 degrees C. The thermal oxidizer operating temperature was 791 degrees C. Data of the toxic dioxin and furan congeners are reported. Important results of this field study are: (1) the catalytic oxidizer in this study produced an increase in PCDD/PCDF congener concentration of almost 10-fold from the inlet to the outlet (stack), thus verifying results of a previous study that evaluated only PCDD/PCDF emissions. All congeners increased from inlet to the stack. (2) The thermal oxidizer had little effect on PCDD/PCDF levels. There was a decrease in four of the congeners and an increase in 13 congeners. (3) Ambient air was the main source of PCDD/PCDFs in the stack emissions of the thermal oxidizer in this study. Laboratory investigations are needed to understand how PCDD/PCDFs are formed (and emitted) under conditions of this study.  相似文献   

11.
Cunliffe AM  Williams PT 《Chemosphere》2007,66(6):1146-1152
A municipal solid waste incinerator flyash was heated to between 200 and 400 degrees C under nitrogen in a bench-scale, static bed reactor for 4 days soak time. The influence of temperature on the levels of PCDD and PCDF remaining in and desorbed from the ash were investigated using GC-MS/MS. PCDD and especially PCDF formation was seen on the flyash between 225 and 300 degrees C. Large increases in the I-TEQ of the treated ash relative to the increase in its overall PCDD/PCDF content indicated that the formation of 2378-substituted congeners was favoured over that of other substitution patterns. In the absence of a source of gaseous oxygen, formation was mainly attributed to de novo reactions involving solid phase oxygen. Dechlorination of the PCDD/PCDF in flyash became increasingly important above 275 degrees C. Maximum desorption was seen at 325 degrees C, with the equivalent of 35 wt% of the PCDD/F in the original flyash being recovered from the exhaust traps at this temperature. The desorbed species were mainly M(1)CDD/CDDF-T(3)CDD/CDDF resulting from dechlorination of higher chlorinated PCDD/PCDF, with consequently low I-TEQ values.  相似文献   

12.
Ryu JY 《Chemosphere》2008,71(6):1100-1109
Formation of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and chlorinated phenols on CuCl(2) from unsubstituted phenol and three monochlorophenols was studied in a flow reactor over a temperature range of 100-425 degrees C. Heated nitrogen gas streams containing 8.0% oxygen were used as carrier gas. The 0.00024mol of unsubstituted phenol and 0.00039mol of each monochlorophenol were passed through a 1g and 1cm SiO(2) particle containing 0.5% (Cu by mass) CuCl(2). Chlorination preferentially occurred on ortho-(2, 6) and para-(4) positions. Chlorination increased up to 200 degrees C, and thereafter decreased as temperature increased. Chlorination of phenols plays an important role in the formation of the more chlorinated PCDD/Fs. Chlorinated benzenes are formed possibly from both chlorination of benzene and chlorodehydroxylation of phenols. Chlorinated phenols with ortho chlorine formed PCDD products, and major PCDD products were produced via loss of one chlorine. For PCDF formation, at least one unchlorinated ortho carbon was required.  相似文献   

13.
The effect of temperature on polyvinylchloride (PVC) combustion using a downstream tubular furnace was investigated for the formation of polycylcic aromatic hydrocarbons (PAHs) and chlorinated compounds. As the temperature increased, higher levels of PAHs were generated. Chlorinated compounds reached a peak at 600 degrees C, with low emissions recorded at 300 and 900 degrees C. There was a close correlation (R2 = 0.97) among polychlorinated biphenyls (PCBs), hexachlorobenzene, pentachlorobenzene, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). PAHs at all temperatures were analyzed in the gas phase. PCDD/Fs and PCBs were emitted as a solid phase at 300 and 600 degrees C and as a gas phase at 900 degrees C. For some PAHs, chlorobenzenes, and PCDD/Fs, a mathematical equation between the gas and solid phase and the reciprocal temperature in semilog proportion was derived. The proposed equation, which is log (amount in gas phase/amount in solid phase) = -A/T + B, where T is the temperature of the furnace and A and B are constants, for these species relating their gas/solid distributions showed a good relationship.  相似文献   

14.
Homologue and isomer patterns of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) in CuCl2-catalyzed formation were studied in an isothermal flow reactor using a distribution of 20 phenols as measured in municipal waste incinerator (MWI) exhaust gases. A mixture of 20 phenols was synthesized and used as reactants for this study because phenols are known to be key precursors in the formation of PCDD/F. Experiments were conducted at 400 degrees C. The 92% of nitrogen (N2) and 8% of oxygen (O2) were used as a carrier gas. PCDD/F homologue and isomer patterns with dibenzo-p-dioxin (DD) and dibenzofuran (DF) were obtained from a mixture of 20 phenols. DF+PCDF formation was favored over DD+PCDD formation. The major homologue groups formed were non-chlorinated DD and DF, and PCDD/F homologue fraction decreased with the degree of chlorination. PCDD/F homologue and isomer distributions were almost constant. Phenol and lower chlorinated phenols present in high amount played an important role in PCDD/F congener distributions. The results presented here can be used as characteristics or fingerprints for homologue and isomer patterns of PCDD/F formation attribution in CuCl2-catalyzed reaction from phenols.  相似文献   

15.
Ogura I  Masunaga S  Nakanishi J 《Chemosphere》2001,44(6):1473-1487
The atmospheric bulk (dry and wet) deposition of dioxins was investigated at four locations (Tokyo, Yokohama, Tsukuba, and Tanzawa) in the Kanto region (in Japan) over one year using a stainless-steel pot. Annual average polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) deposition fluxes were estimated to be from 450 to 1300 ng/m2/yr, and the annual average TEQ fluxes from 5.7 to 17 ng-TEQ/m2/yr at the four locations. The PCDD/PCDF deposition flux was higher in winter than in summer. The deposition flux could be related to ambient temperature, particularly for less chlorinated PCDDs/PCDFs, while the deposition flux is not necessarily related to the amount of precipitation. The PCDD/PCDF deposition flux increased as the particle deposition flux increased, for the winter samples. Based on the ratio of the PCDD/PCDF deposition fluxes to the particle deposition fluxes, the contribution of the reentrainment of soil particles to the TEQ of PCDD/PCDF deposition was considered to be negligible in this region. Based on the air concentrations monitored near our deposition sampling points by the municipalities, the ratio of the annual deposition flux to the annual average air concentration was roughly estimated to be 0.082 cm/s. The range of deposition flux in the Kanto region was estimated to be from 1.5 to 31 (median: 9.8) ng-TEQ/m2/yr based on the range of air concentration data measured by the municipalities. The total annual deposition flux in the entire Kanto region was estimated to range from 50 to 900 g-TEQ/yr (median 320 g-TEQ/yr). This estimated flux was of the same order as the sum of estimated emissions from municipal solid waste incinerators and industrial waste incinerators in the Kanto region. The contributions of dioxin-like PCBs in Yokohama, Tsukuba, and Tanzawa depositions were less than 10% of the total TEQ; however, in Tokyo it was almost equal to or more than 50%.  相似文献   

16.
Weber R  Hagenmaier H 《Chemosphere》1999,38(3):529-549
The pyrolysis of chlorinated phenates at a temperature of about 280 degrees C results in the formation of definite chlorinated dibenzodioxin (PCDD) congeners [1-3]. It is shown that in gas phase reactions chlorophenols react in the presence of oxygen above 340 degrees C not only to PCDD but also to chlorinated dibenzofurans (PCDF). The mechanism of this reaction of chlorophenols to PCDD and PCDF was elucidated. In a first step phenoxyradicals are formed which are capable of forming PCDDs and PCDFs. This is confirmed by the oxygen dependency of the reaction. In an argon atmosphere no dimerization of chlorophenols could be observed at 420 degrees C. By the identification of intermediates and by analyzing the PCDF isomers formed from individual chlorophenols the reaction pathway is elucidated. As intermediates in the formation of PCDFs polychlorinated dihydroxybiphenyls (DOHB) were identified. These are most likely formed by the dimerization of two phenoxy radicals at the hydrogen substituted carbons in ortho-positions under simultaneous movement of the hydrogen atoms to the phenolic oxygen PCDDs are formed in the gas phase via ortho-phenoxyphenols (POP) analogous to the pyrolysis of phenates, but due to the radical mechanism in the first condensation step to POPs not only a chlorine atom is capable for substitution but also the hydrogen atoms. The formation of the DOHBs and their condensation to PCDFs and hydroxylated PCDFs as well as the ratio of PCDD to PCDF formed show a strong dependency on the reaction temperature, the substitution pattern of the chlorophenols and the oxygen concentration.  相似文献   

17.
The effect of reaction time on formation of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) was studied under laboratory conditions in the system containing municipal waste incineration fly ash, activated carbon and copper chloride dihydrate at 300 degrees C in 99.999% N2 and N2 + 10% O2 atmosphere. The concentrations of tetra- to octa-chlorinated isomers as well as I-TEQ concentrations of toxic congeners are reported. The mechanism of PCDD and PCDF formation from chlorophenols and chlorinated biphenyls is discussed in the light of the time changes of PCDD/PCDF ratios.  相似文献   

18.
Experiments at a pilot scale waste incinerator (0.5 MW thermal power) showed that the conditions in the post-combustion chamber (650-900 degrees C) are strongly influencing the formation of chlorinated and non-chlorinated aromatics. Non-optimal combustion conditions resulted in increased concentrations of mono- to trichlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and polycyclic aromatic hydrocarbons (PAH), while chlorinated benzenes (PCBz), polychlorinated biphenyls (PCB) and the higher chlorinated PCDD/F are only weakly affected or even decrease. The changes in concentration of the compounds investigated over a time span of hours gave hints on 'memory effects' in this combustion zone. For mono- and dichlorinated benzenes, a high correlation (r2 = 0.80) with the international toxicity equivalent (I-TEQ) value of PCDD/F was observed. As recently has been demonstrated, this correlation can be utilized for an indirect on-line measurement of the I-TEQ by a novel laser mass spectrometric technique (REMPI-TO-FMS).  相似文献   

19.
In this paper results of various measurement campaigns at different municipal waste incineration (MWI) plants concerning the change of the PCDD/PCDF isomer distribution in the crude gas during transiently impaired combustion conditions are presented. The focus is on the Cl4DD isomer distributions exemplarily for all other homologue groups to demonstrate the change in PCDD/PCDF formation mechanism at transient combustion conditions. Additionally to crude gas samples, at one plant filter and boiler ash were investigated simultaneously to determine if there is any difference in the isomer distribution between the matrices. For the ash from an electrostatic precipitator (ESP ash), the boiler ash and the corresponding crude gas sample, nearly identical changes in the Cl4DD isomer distribution under transient combustion conditions in relation to the normal operation process could be detected. By comparing the Cl4DD isomer distributions from different incineration plants (two municipal waste incinerators and one little incinerator burning wood chips for heating domestic household) under transient combustion conditions, in all cases the 1,3,6,8- and 1,3,7,9-Cl4DD were dominating the isomer distribution, whereas under normal operation other isomers were predominant. Obviously PCDD/PCDF formation mechanisms under transient combustion conditions are independent from the type of incinerator and of the burned fuel, respectively. Data sets were analyzed with respect to the possible reaction mechanism via chlorophenols and a good correlation of 2,4,6-trichlorophenol during the second phase of a start-up process and during a CO experiment was found. To get more detailed information about possible formation mechanisms, at one plant the dependence of the PCDD/PCDF isomer distribution on the different matrices was studied. Separate analysis of fly ash collected at the boiler exit, subsequent gas phase, ESP ash and boiler ash under normal operation conditions showed that, apart from the fly ash, the Cl4DD isomer distributions are nearly the same in the different matrices. Surprisingly, the Cl4DD isomer distribution of the fly ash was more similar to the distributions found under transient combustion conditions.  相似文献   

20.
PCDD and PCDF were found in urban air particulates from St. Louis and Washington, D.C., and in sediments from the Great Lakes and Siskiwit Lake, Isle Royale. The similarity between the PCDD and PCDF found in air particulates and sediment samples and the presence of PCDD and PCDF in sediment from Siskiwit Lake (a location which can receive only atmospheric inputs) suggest that these compounds are emitted to the atmosphere from combustion sources. The historical input of PCDD and PCDF to dated sediment cores shows a strong increase since 1940, and this suggests that the incineration of chlorinated organic compounds is an important source of PCDD and PCDF to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号