首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Five Potential Consequences of Climate Change for Invasive Species   总被引:3,自引:0,他引:3  
Abstract:  Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.  相似文献   

2.
Abstract:  The consequences of climate change will affect aquatic ecosystems, including aquatic invasive species (AIS) that are already affecting these ecosystems. Effects on AIS include range shifts and more frequent overwintering of species. These effects may create new challenges for AIS management. We examined available U.S. state AIS management plans to assess each program's capacity to adapt to climate-change effects. We scored the adaptive capacity of AIS management plans on the basis of whether they addressed potential impacts resulting from climate change; demonstrated a capacity to adapt to changing conditions; provided for monitoring strategies; provided for plan revisions; and described funding for implementation. Most plans did not mention climate change specifically, but some did acknowledge climatic boundaries of species and ecosystem sensitivities to changing conditions. Just under half the plans mentioned changing environmental conditions as a factor, most frequently as part of research activities. Activities associated with monitoring showed the highest capacity to include information on changing conditions, and future revisions to management plans are likely to be the easiest avenue through which to address climate-change effects on AIS management activities. Our results show that programs have the capacity to incorporate information about climate-change effects and that the adaptive-management framework may be an appropriate approach.  相似文献   

3.
Abstract:  The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.  相似文献   

4.
An Assessment of Invasion Risk from Assisted Migration   总被引:4,自引:0,他引:4  
Abstract:  To reduce the risk of extinction due to climate change, some ecologists have suggested human-aided translocation of species, or assisted migration (AM), to areas where climate is projected to become suitable. Such intentional movement, however, may create new invasive species if successful introductions grow out of control and cause ecologic or economic damage. We assessed this risk by surveying invasive species in the United States and categorizing invaders based on origin. Because AM will involve moving species on a regional scale within continents (i.e., range shifts), we used invasive species with an intracontinental origin as a proxy for species that would be moved through AM. We then determined whether intracontinental invasions were more prevalent or harmful than intercontinental invasions. Intracontinental invasions occurred far less frequently than invasions from other continents, but they were just as likely to have had severe effects. Fish and crustaceans pose a particularly high threat of intracontinental invasion. We conclude that the risk of AM to create novel invasive species is small, but assisted species that do become invasive could have large effects. Past experience with species reintroductions may help inform policy regarding AM.  相似文献   

5.
Assessing the Effects of Climate Change on Aquatic Invasive Species   总被引:4,自引:0,他引:4  
Abstract:  Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.  相似文献   

6.
Abstract:  Alien invasive species represent a severe risk to biodiversity. Such is the case of buffel grass ( Cenchrus ciliaris L.), a native species of Southern Asia and East Africa, which was introduced to the United States and Mexico for use in improved pasture. Here we present a coarse-grain approach to determine areas where buffel grass can potentially invade in Mexico. Potential species distributions, suitable for an invasion by buffel grass, were obtained through genetic algorithms. We generated the algorithms with databases of herbaria specimens; environmental digital covers of climate, soil texture, and vegetation; and the program called Genetic Algorithm for Rule-Set Prediction. This spatial modeling approach was validated with a case study for the state of Sonora, Mexico, where the occurrence of buffel grass has been proven. The most threatened vegetation types for the specific case of Sonora were desert scrub, mesquite woodlands, and tropical deciduous forest. The model prediction agreed with the field observations recorded in Sonora and allowed us to apply the same procedure to produce a map of the potential sites of buffel grass invasion for Mexico. The areas at risk of invasion mostly occurred in desert scrub, located in the arid and semiarid regions of northern Mexico. This methodology provides an initial baseline for assessment, prevention, and management of alien species that may become invasive under certain environmental conditions. Additionally this modeling approach provides a tool for policy makers to use in making decisions on land-use management practices when alien species are involved.  相似文献   

7.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   

8.
9.
Abstract:  Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.  相似文献   

10.
Abstract:  Climate change poses a challenge to the conventional approach to biodiversity conservation, which relies on fixed protected areas, because the changing climate is expected to shift the distribution of suitable areas for many species. Some species will persist only if they can colonize new areas, although in some cases their dispersal abilities may be very limited. To address this problem we devised a quantitative method for identifying multiple corridors of connectivity through shifting habitat suitabilities that seeks to minimize dispersal demands first and then the area of land required. We applied the method to Proteaceae mapped on a 1-minute grid for the western part of the Cape Floristic Region of South Africa, to supplement the existing protected areas, using Worldmap software. Our goal was to represent each species in at least 35 grid cells (approximately 100 km2) at all times between 2000 and 2050 despite climate change. Although it was possible to achieve the goal at reasonable cost, caution will be needed in applying our method to reserves or other conservation investments until there is further information to support or refine the climate-change models and the species' habitat-suitability and dispersal models.  相似文献   

11.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   

12.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

13.
Abstract:  Rainbow smelt ( Osmerus mordax ) have invaded many North American lakes, often resulting in the extirpation of native fish populations. Yet, their invasion is incipient and provides the rationale for identifying ecosystems likely to be invaded and where management and prevention efforts should be focused. To predict smelt presence and absence, we constructed a classification-tree model based on habitat data from 354 lakes in the native range for smelt in southern Maine. Maximum lake depth, lake area, and Secchi depth (surrogate measure of lake productivity) were the most important predictors. We then used our model to identify lakes vulnerable to invasion in three regions outside the smelt's native range: northern Maine (52 of 244 lakes in the non-native range), Ontario (4447 of 8110), and Wisconsin (553 of 5164). We further identified a subset of lakes with a strong potential for impact (potential–impact lakes) based on the presence of fish species that are affected by rainbow smelt. Ninety-four percent of vulnerable lakes in the non-native range in Maine are also potential–impact lakes, as are 94% and 58% of Ontario and Wisconsin's vulnerable lakes, respectively. Our modeling approach can be applied to other invaders and regions to identify invasion-prone ecosystems, thus aiding in the management of invasive species and the efficient allocation of invasive species mitigation and prevention resources.  相似文献   

14.
Expansion of the global protected-area network has been proposed as a strategy to address threats from accelerating climate change and species extinction. A key step in increasing the effectiveness of such expansion is understanding how novel threats to biodiversity from climate change alter concepts such as rewilding, which have underpinned many proposals for large interconnected reserves. We reviewed potential challenges that climate change poses to rewilding and found that the conservation value of large protected areas persists under climate change. Nevertheless, more attention should be given to protection of microrefugia, macrorefugia, complete environmental gradients, and areas that connect current and future suitable climates and to maintaining ecosystem processes and stabilizing feedbacks via conservation strategies that are resilient to uncertainty regarding climate trends. Because a major element of the threat from climate change stems from its novel geographic patterns, we examined, as an example, the implications for climate-adaptation planning of latitudinal, longitudinal (continental to maritime), and elevational gradients in climate-change exposure across the Yellowstone-to-Yukon region, the locus of an iconic conservation proposal initially designed to conserve wide-ranging carnivore species. In addition to a continued emphasis on conserving intact landscapes, restoration of degraded low-elevation areas within the region is needed to capture sites important for landscape-level climate resilience. Extreme climate exposure projected for boreal North America suggests the need for ambitious goals for expansion of the protected-area network there to include refugia created by topography and ecological features, such as peatlands, whose conservation can also reduce emissions from carbon stored in soil. Qualitative understanding of underlying reserve design rules and the geography of climate-change exposure can strengthen the outcomes of inclusive regional planning processes that identify specific sites for protection.  相似文献   

15.
The development of species recovery plans requires considering likely outcomes of different management interventions, but the complicating effects of climate change are rarely evaluated. We examined how qualitative network models (QNMs) can be deployed to support decision making when data, time, and funding limitations restrict use of more demanding quantitative methods. We used QNMs to evaluate management interventions intended to promote the rebuilding of a collapsed stock of blue king crab (Paralithodes platypus) (BKC) around the Pribilof Islands (eastern Bering Sea) to determine how their potential efficacy may change under climate change. Based on stakeholder input and a literature review, we constructed a QNM that described the life cycle of BKC, key ecological interactions, potential climate-change impacts, relative interaction strengths, and uncertainty in terms of interaction strengths and link presence. We performed sensitivity analyses to identify key sources of prediction uncertainty. Under a scenario of no climate change, predicted increases in BKC were reliable only when stock enhancement was implemented in a BKC hatchery-program scenario. However, when climate change was accounted for, the intervention could not counteract its adverse impacts, which had an overall negative effect on BKC. The remaining management scenarios related to changes in fishing effort on BKC predators. For those scenarios, BKC outcomes were unreliable, but climate change further decreased the probability of observing recovery. Including information on relative interaction strengths increased the likelihood of predicting positive outcomes for BKC approximately 5–50% under the management scenarios. The largest gains in prediction precision will be made by reducing uncertainty associated with ecological interactions between adult BKC and red king crab (Paralithodes camtschaticus). Qualitative network models are useful options when data are limited, but they remain underutilized in conservation.  相似文献   

16.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

17.
Species that cannot adapt or keep pace with a changing climate are likely to need human intervention to shift to more suitable climates. While hundreds of articles mention using translocation as a climate-change adaptation tool, in practice, assisted migration as a conservation action remains rare, especially for animals. This is likely due to concern over introducing species to places where they may become invasive. However, there are other barriers to consider, such as time-frame mismatch, sociopolitical, knowledge and uncertainty barriers to conservationists adopting assisted migration as a go-to strategy. We recommend the following to advance assisted migration as a conservation tool: attempt assisted migrations at small scales, translocate species with little invasion risk, adopt robust monitoring protocols that trigger an active response, and promote political and public support.  相似文献   

18.
For conservation science to effectively inform management, research must focus on creating the scientific knowledge required to solve conservation problems. We identified research questions that, if answered, would increase the effectiveness of conservation and natural resource management practice and policy in Oceania's small‐island developing states. We asked conservation professionals from academia, governmental, and nongovernmental organizations across the region to propose such questions and then identify which were of high priority in an online survey. We compared the high‐priority questions with research questions identified globally and for other regions. Of 270 questions proposed by respondents, 38 were considered high priority, including: What are the highest priority areas for conservation in the face of increasing resource demand and climate change? How should marine protected areas be networked to account for connectivity and climate change? What are the most effective fisheries management policies that contribute to sustainable coral reef fisheries? High‐priority questions related to the particular challenges of undertaking conservation on small‐island developing states and the need for a research agenda that is responsive to the sociocultural context of Oceania. Research priorities for Oceania relative to elsewhere were broadly similar but differed in specific issues relevant to particular conservation contexts. These differences emphasize the importance of involving local practitioners in the identification of research priorities. Priorities were reasonably well aligned among sectoral groups. Only a few questions were widely considered answered, which may indicate a smaller‐than‐expected knowledge‐action gap. We believe these questions can be used to strengthen research collaborations between scientists and practitioners working to further conservation and natural resource management in this region.  相似文献   

19.
As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species’ establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima  相似文献   

20.
The Ecological Society of America has evaluated current U.S. national policies and practices on biological invasions in light of current scientific knowledge. Invasions by harmful nonnative species are increasing in number and area affected; the damages to ecosystems, economic activity, and human welfare are accumulating. Without improved strategies based on recent scientific advances and increased investments to counter invasions, harm from invasive species is likely to accelerate. Federal leadership, with the cooperation of state and local governments, is required to increase the effectiveness of prevention of invasions, detect and respond quickly to new potentially harmful invasions, control and slow the spread of existing invasions, and provide a national center to ensure that these efforts are coordinated and cost effective. Specifically, the Ecological Society of America recommends that the federal government take the following six actions: (1) Use new information and practices to better manage commercial and other pathways to reduce the transport and release of potentially harmful species; (2) Adopt more quantitative procedures for risk analysis and apply them to every species proposed for importation into the country; (3) Use new cost-effective diagnostic technologies to increase active surveillance and sharing of information about invasive species so that responses to new invasions can be more rapid and effective; (4) Create new legal authority and provide emergency funding to support rapid responses to emerging invasions; (5) Provide funding and incentives for cost-effective programs to slow the spread of existing invasive species in order to protect still uninvaded ecosystems, social and industrial infrastructure, and human welfare; and (6) Establish a National Center for Invasive Species Management (under the existing National Invasive Species Council) to coordinate and lead improvements in federal, state, and international policies on invasive species. Recent scientific and technical advances provide a sound basis for more cost-effective national responses to invasive species. Greater investments in improved technology and management practices would be more than repaid by reduced damages from current and future invasive species. The Ecological Society of America is committed to assist all levels of government and provide scientific advice to improve all aspects of invasive-species management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号