共查询到13条相似文献,搜索用时 15 毫秒
1.
JESSICA J. HELLMANN JAMES E. BYERS† BRITTA G. BIERWAGEN‡ JEFFREY S. DUKES§ 《Conservation biology》2008,22(3):534-543
Abstract: Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management. 相似文献
2.
Abstract: Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions. 相似文献
3.
Managing Aquatic Species of Conservation Concern in the Face of Climate Change and Invasive Species 总被引:2,自引:0,他引:2
Abstract: The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species. 相似文献
4.
Abstract: The consequences of climate change will affect aquatic ecosystems, including aquatic invasive species (AIS) that are already affecting these ecosystems. Effects on AIS include range shifts and more frequent overwintering of species. These effects may create new challenges for AIS management. We examined available U.S. state AIS management plans to assess each program's capacity to adapt to climate-change effects. We scored the adaptive capacity of AIS management plans on the basis of whether they addressed potential impacts resulting from climate change; demonstrated a capacity to adapt to changing conditions; provided for monitoring strategies; provided for plan revisions; and described funding for implementation. Most plans did not mention climate change specifically, but some did acknowledge climatic boundaries of species and ecosystem sensitivities to changing conditions. Just under half the plans mentioned changing environmental conditions as a factor, most frequently as part of research activities. Activities associated with monitoring showed the highest capacity to include information on changing conditions, and future revisions to management plans are likely to be the easiest avenue through which to address climate-change effects on AIS management activities. Our results show that programs have the capacity to incorporate information about climate-change effects and that the adaptive-management framework may be an appropriate approach. 相似文献
5.
HENRY LEE II DEBORAH A. REUSSER† JULIAN D. OLDEN‡ SCOTT S. SMITH† JIM GRAHAM§ VIRGINIA BURKETT JEFFREY S. DUKES†† ROBERT J. PIORKOWSKI‡‡ JOHN MCPHEDRAN§§ 《Conservation biology》2008,22(3):575-584
Abstract: Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change. 相似文献
6.
综述了气候变化对物种的影响,表明气候变化会造成生物物候期的改变,导致物种地理分布的变化,增加物种的灭绝速率。分析了利用模型进行气候变化影响模拟的技术,指出模型的适用性和不确定性。最后,针对中国相关研究的不足,展望了未来开展气候变化影响研究的方向。 相似文献
7.
CÉSAR CAPINHA ELENA TRICARICO JULIAN D. OLDEN FRANCESCA GHERARDI 《Conservation biology》2013,27(4):731-740
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos 相似文献
8.
Effects of Climate and Land-Use Change on Species Abundance in a Central European Bird Community 总被引:2,自引:0,他引:2
NICOLE LEMOINE† HANS-GÜNTHER BAUER‡§ MARKUS PEINTINGER KATRIN BÖHNING-GAESE†‡‡ 《Conservation biology》2007,21(2):495-503
Abstract: Although it is known that changes in land use and climate have an impact on ecological communities, it is unclear which of these factors is currently most important. We sought to determine the influence of land-use and climate alteration on changes in the abundance of Central European birds. We examined the impact of these factors by contrasting abundance changes of birds of different breeding habitat, latitudinal distribution, and migratory behavior. We examined data from the semiquantitative Breeding Bird Atlas of Lake Constance, which borders Germany, Switzerland, and Austria. Changes in the regional abundance of the 159 coexisting bird species from 1980–1981 to 2000–2002 were influenced by all three factors. Farmland birds, species with northerly ranges, and long-distance migrants declined, and wetland birds and species with southerly ranges increased in abundance. A separate analysis of the two decades between 1980–1981 and 1990–1992 and between 1990–1992 and 2000–2002 showed that the impact of climate change increased significantly over time. Latitudinal distribution was not significant in the first decade and became the most significant predictor of abundance changes in the second decade. Although the spatial scale and temporal resolution of our study is limited, this is the first study that suggests that climate change has overtaken land-use modification in determining population trends of Central European birds. 相似文献
9.
National Threatened Species Listing Based on IUCN Criteria and Regional Guidelines: Current Status and Future Perspectives 总被引:3,自引:0,他引:3
REBECCA M. MILLER JON PAUL RODRÍGUEZ†‡‡‡ THERESA ANISKOWICZ-FOWLER‡ CHANNA BAMBARADENIYA§ RUBEN BOLES MARK A. EATON†† ULF GÄRDENFORS‡‡ VERENA KELLER§§ SANJAY MOLUR SALLY WALKER CAROLINE POLLOCK††† 《Conservation biology》2007,21(3):684-696
10.
MARISKA WEIJERMAN C. MARK EAKIN PAUL MCELHANY MARGARET W. MILLER MATT PATTERSON GREGORY A. PINIAK MATTHEW J. DUNLAP CHARLES BIRKELAND 《Conservation biology》2013,27(6):1169-1178
Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration—requiring prompt action rather than awaiting better information. We developed an expert‐opinion threat‐based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species‐specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species’ extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data‐limited species likely to be affected by global‐scale threats. Incorporación del Cambio Climático y Oceánico en Estudios de Riesgo de Extinción para 82 Especies de Coral 相似文献
11.
JULIAN D. OLDEN MARK J. KENNARD JOSHUA J. LAWLER N. LEROY POFF 《Conservation biology》2011,25(1):40-47
Abstract: The rapidity of climate change is predicted to exceed the ability of many species to adapt or to disperse to more climatically favorable surroundings. Conservation of these species may require managed relocation (also called assisted migration or assisted colonization) of individuals to locations where the probability of their future persistence may be higher. The history of non‐native species throughout the world suggests managed relocation may not be applicable universally. Given the constrained existence of freshwater organisms within highly dendritic networks containing isolated ponds, lakes, and rivers, managed relocation may represent a useful conservation strategy. Yet, these same distinctive properties of freshwater ecosystems may increase the probability of unintended ecological consequences. We explored whether managed relocation is an ecologically sound conservation strategy for freshwater systems and provided guidelines for identifying candidates and localities for managed relocation. A comparison of ecological and life‐history traits of freshwater animals associated with high probabilities of extirpation and invasion suggests that it is possible to select species for managed relocation to minimize the likelihood of unintended effects to recipient ecosystems. We recommend that translocations occur within the species’ historical range and optimally within the same major river basin and that lacustrine and riverine species be translocated to physically isolated seepage lakes and upstream of natural or artificial barriers, respectively, to lower the risk of secondary spread across the landscape. We provide five core recommendations to enhance the scientific basis of guidelines for managed relocation in freshwater environments: adopt the term managed translocation to reflect the fact that individuals will not always be reintroduced within their historical native range; examine the trade‐off between facilitation of individual movement and the probability of range expansion of non‐native species; determine which species and locations might be immediately considered for managed translocation; adopt a hypothetico‐deductive framework by conducting experimental trials to introduce species of conservation concern into new areas within their historical range; build on previous research associated with species reintroductions through communication and synthesis of case studies. 相似文献
12.
JOSEPH D. WHITE KEVIN J. GUTZWILLER WYLIE C. BARROW LORI JOHNSON‐RANDALL LISA ZYGO PAMELA SWINT 《Conservation biology》2011,25(3):536-546
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes. 相似文献
13.
Abstract: Even under the most optimistic scenarios, during the next century human‐caused climate change will threaten many wild populations and species. The most useful conservation response is to enlarge and link protected areas to support range shifts by plants and animals. To prioritize land for reserves and linkages, some scientists attempt to chain together four highly uncertain models (emission scenarios, global air–ocean circulation, regional circulation, and biotic response). This approach has high risk of error propagation and compounding and produces outputs at a coarser scale than conservation decisions. Instead, we advocate identifying land facets—recurring landscape units with uniform topographic and soil attributes—and designing reserves and linkages for diversity and interspersion of these units. This coarse‐filter approach would conserve the arenas of biological activity, rather than the temporary occupants of those arenas. Integrative, context‐sensitive variables, such as insolation and topographic wetness, are useful for defining land facets. Classification procedures such as k‐means or fuzzy clustering are a good way to define land facets because they can analyze millions of pixels and are insensitive to case order. In regions lacking useful soil maps, river systems or riparian plants can indicate important facets. Conservation planners should set higher representation targets for rare and distinctive facets. High interspersion of land facets can promote ecological processes, evolutionary interaction, and range shift. Relevant studies suggest land‐facet diversity is a good surrogate for today's biodiversity, but fails to conserve some species. To minimize such failures, a reserve design based on land facets should complement, rather than replace, other approaches. Designs based on land facets are not biased toward data‐rich areas and can be applied where no maps of land cover exist. 相似文献