首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Adsorption of phenols by papermill sludges   总被引:8,自引:0,他引:8  
In this paper we studied the sorption capacity of paper mill sludges for phenols. Phenol, 2-chlorophenol (2-CP), 3-chlorophenol 3-CP). 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2.4-dichlorophenol (2,4-DCP), 3,4-dichlorophenol (3,4-DCP) 3,5-dichlorophenol (3,5-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) were chosen for the sorption tests. Kinetic experiments showed that substituted-phenol sorption on papermill sludge was rapid (equilibrium was reached after 3 h); conversely, the time taken by the phenol to reach equilibrium conditions was 260 h. Experimental data showed that particle diffusion was involved in the sorption process but was not the only rate-limiting mechanism; several other mechanisms were involved. The adsorption isotherms showed the following order of retention capacity of papermill sludge: 2-NP = 4-NP < < 2-CP < phenol < 4-CP < or = 3-CP < 2,4 DCP<3,4 DCP=2,4,5 TCP<3,5 DCP. In all cases the experimental data showed a good fit with the Hill equation. which is mathemratically equivalent to the Langmuir-Freundlich model obtained by assuming that the surface is homogeneous, and that the adsorption is a cooperative process influenced by adsorbate-adsorbate interactions.  相似文献   

2.
Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe3O4 was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 μ M was transformed within 48 h in the presence of 300 mg L?1 nanoscale Fe3O4, and the reaction rates increased with increasing dosage of nanoscale Fe3O4. The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite–water system. Reductive transformation of 2,4-D by microscale Fe3O4 was slower than that by nanoscale Fe3O4. The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.  相似文献   

3.
采用改进液相化学还原法制备纳米Pd/Fe双金属颗粒,研究其钯化率为0.045%和0.135%的条件下分别对3种单氯酚(2-CP、3-CP和4-CP)和3种二氯酚(2,3-DCP、2,4-DCP和2,6-DCP)的脱氯反应。结果表明,合成的纳米Pd/Fe颗粒分散性良好,粒径分布介于25~40nm。纳米Pd/Fe双金属颗粒对单氯酚及二氯酚具有良好的去除效果,3种单氯酚和3种二氯酚的脱氯难易程度分别为2-CP〉4-CP〉3-CP和2,6-DCP〉2,4-DCP〉2,3-DCP,脱氯反应均符合拟一级反应动力学方程。通过还原脱氯实验揭示了分子中氯原子的化学环境对还原脱氯过程具有明显影响。  相似文献   

4.
Zhang Y  Zhou M  Hao X  Lei L 《Chemosphere》2007,67(4):702-711
The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.  相似文献   

5.
Kwan CY  Chu W 《Chemosphere》2007,67(8):1601-1611
Recent studies have shown that hydrogen peroxide is generated in a ferrioxalate-induced photoreductive reaction, but information about the effect of organic ligands on the photochemical behaviour of ferrous species is limited. The degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by a ferrous-catalyzed oxidation in the presence of various ligands such as formate, citrate, malelate, oxalate, and ethylenediaminetetra-acetic acid (EDTA) was studied. The experiments were conducted under either dark or irradiated (350n m) conditions. Forty-two percent and 34% of 2,4-D were removed by the Fe(2+)/oxalate/UV and Fe(2+)/citrate/UV processes, respectively, after 30 min of reaction and oxidative intermediates were obtained in both cases. The presence of hydroxylated intermediates suggests that 2,4-D may be attacked by hydroxyl radicals, which are the products of the photo-Fenton-like reaction. As such, hydrogen peroxide was produced by the photolysis of ferrous oxalate or ferrous citrate, referred to hereafter as photogenerated H(2)O(2). As expected, the total removal percentage of 2,4-D jumped to 97% when 1mM of hydrogen peroxide (so-called spiked H(2)O(2)) was externally added to the reaction vessel to initiate the Fe(2+)/oxalate/UV process. Therefore, the treatment of 2,4-D by the Fe(2+)/oxalate/H(2)O(2)/UV system can be operated in two steps: the photolysis of ferrous oxalate first, followed by adding the spiked H(2)O(2) sometime after the commencement of the reaction. A two-phase model has been developed to describe this tandem ferrous-catalyzed photooxidation, which would help to achieve the mineralization of 2,4-D.  相似文献   

6.
Vione D  Minero C  Housari F  Chiron S 《Chemosphere》2007,69(10):1548-1554
2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) undergo oxidation, nitrosation and nitration in the presence of nitrate under UV irradiation. Nitration is favoured under acidic conditions, most likely because HNO(2) is formed on nitrate photolysis. The most likely photonitration pathway is the reaction between radiation-excited dichlorophenols (DCP*) and HNO(2). HNO(2) is also able to nitrate DCP in the dark with elevated yields. Irradiation also causes DCP direct photolysis, which is more efficient for the dichlorophenolate anions. The photolysis of the dichlorophenols and that of the dichlorophenolates also produce different intermediates, by dechlorination in the former and ring contraction in the latter case.  相似文献   

7.
Briois C  Visez N  Baillet C  Sawerysyn JP 《Chemosphere》2006,62(11):1806-1816
The thermal oxidation of 2-chlorophenol (2-CP) in air was investigated using a perfectly stirred reactor at 1 atm over the temperature range 450–900 °C. The relative concentration of 2-CP was 1000 ppmV (equivalence ratio Φ = 0.03). About fifty organic products were identified as trace species. The concentration profiles of 2-CP, carbon oxides as well as those of seventeen major organic intermediates and six non-to-lower chlorinated dioxins and furans were presented as a function of temperature for a residence time of 2 s. The most abundant intermediate products were carbon monoxide, 2 H-pyran-2-one, chlorobenzene, 4-cyclopenten-1,3-dione, phenol, benzofuran, 2-chlorohydroquinone and 2-indanone. These concentration profiles have revealed that temperatures of at least 900 °C were needed to completely oxidize 2-CP, CO and all other organic byproducts to carbon dioxide. Reaction pathways accounting for the formation of most observed products are proposed.  相似文献   

8.
Light regime, riboflavin, and pH effects on 2,4-D photodegradation in water   总被引:1,自引:0,他引:1  
A laboratory study was conducted to determine the effects of light regime, riboflavin, and pH on photodegradation of 2,4-D in aqueous solution. In controlled-environment chamber experiments, riboflavin sensitized 2,4-D photolysis in a concentration-dependent manner under both attenuated UV (-UV) and enhanced UV (+UV) light regimes. The photolysis half-life of 2,4-D in solutions containing 10 mg L-1 riboflavin was 9.7 and 12.5 h when exposed to +UV and -UV, respectively, compared to no photolysis in the absence of riboflavin. In contrast, the extrapolated half-life of 2,4-D in solutions containing 2.5 mg L-1 riboflavin was 46 h under +UV and 72 h under -UV. The rate of 2,4-D photolysis in the presence of riboflavin increased under both light regimes as initial pH of the solution was decreased from 7.5 to 4.5. The half-life of 2,4-D in the presence of 10 mg L-1 riboflavin at pH 4.5 and exposed to +UV was 1.6 h. Lumichrome, a principal photoproduct of riboflavin, did not photosensitize 2,4-D. Concentrations of 2,4-dichlorophenol formed as a result of riboflavin-sensitized 2,4-D photolysis were higher under the -UV than the +UV regime. These results indicate that riboflavin concentration, solution pH, and light regime are interacting factors that may be manipulated to enhance rates of aqueous 2,4-D photolysis.  相似文献   

9.
Photocatalytically active thin TiO(2) films were produced by spin-coating or dip-coating an alkoxy precursor onto a transparent conducting electrode substrate and by thermal oxidation of titanium metal. The thin films were used to study the photoelectrocatalytic or photoelectrochemical degradation of oxalic acid and 4-chlorophenol (4-CP) under near UV (monochromatic, 365 nm) light irradiation. Degradation was monitored by a variety of methods. In the course of oxalic acid degradation, CO(2) formation accounted for up to 100% of the total organic carbon degradation for medium starting concentrations; for the degradation of 4-CP, less CO(2) was detected due to the higher number of oxidation steps, i.e. intermediates. Incident-photon-to-current conversion efficiency, educt degradation and product formation as well as Faradaic efficiencies were calculated for the degradation experiments. Quantum yields and Faradaic efficiencies were found to be strongly dependent on concentration, with maximum values (quantum yield) around 1 for the highest concentrations of oxalic acid.  相似文献   

10.
Huang HH  Lu MC  Chen JN  Lee CT 《Chemosphere》2003,51(9):935-943
The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.  相似文献   

11.
This paper presents an exploratory study of pulp mill bleaching effluent treatment by a biological-photocatalytic coupled system. A fungus, Trametes pubescens, immobilized on polyurethane foam was used to inoculate the biological pre-treatment system. The pretreated effluent was then exposed to a photocatalytic treatment in which two catalysts (TiO2 and ZnO) and two supports (aluminum foil and Luffa cylindrica) were tested. Catalyst characterization was carried out by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Information about crystalline structure, chemical composition, morphology, homogeneity and distribution on the support surface area was obtained. The overall biological-photocatalytic coupled system achieved degradation of 96% of initial total organic carbon (TOC), 97% of 2-chlorophenol (2-CP), 90% of 2,4-dichlorophenol (2,4-CP) and 99% of 2,4,6-trichlorophenol (2,4,6-TCP). This approach of synergistic coupling of T. pubescens and a semiconductor photocatalyst appears to be a viable alternative for the treatment of these non-biodegradable effluents.  相似文献   

12.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

13.
Photolysis of vinclozolin   总被引:1,自引:0,他引:1  
Following photolysis of vinclozolin in methanol five products were detected and identified: 3,5-dichlorophenylisocyanate, 3,5-dichloroaniline, methyl 3,5-dichlorophenylcarbamate, 3-(3-chlorophenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione and methyl (3,5-dichlorophenyl) (2-hydroxy-2-methyl-1-oxo-buten-3-yl) carbamate. The major component identified from photolysis in benzene solution, 3-(3-chlorobiphenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione, was produced by replacement of one chlorine atom by a solvent molecule.  相似文献   

14.
Ye FX  Shen DS 《Chemosphere》2004,54(10):1573-1580
The acclimation of sludge from Hangzhou citrate factory and Hangzhou municipal wastewater treatment plant for degradation dechlorination of chlorophenols (CPs) compounds, and its biodegradation kinetics were studied in batch process with or without addition of sucrose. Three monochlorophenols (2-CP; 3-CP; 4-CP) and pentachlorophenol (PCP) were concurrently fed to different bioreactors. The parameters that were monitored included biogas production, biogas composition and chemical oxygen demand (COD). The results showed that acclimation with chlorophenol can increase the degradation activity of anaerobic sludge and degradation rate of chlorophenolic compounds, and reduce the lag time. Degradation dechlorination activity of the acclimated sludge strongly depended on sludge source, microorganism population and chlorophenol congener. 2-CP was more easily acclimated than 3-CP and 4-CP. Among the four tested compounds, 4-CP was the most difficult to be acclimated. The observed degradation rate with presence of sucrose was higher than that with absence of sucrose, suggesting that addition of the external carbon source can stimulate the formation of acclimated sludge which could effectively degrade chlorophenols. Kinetic equations of biodegradation of chlorophenols were also presented in this paper.  相似文献   

15.
W S Kuo 《Chemosphere》1999,39(11):1853-1860
Synergistic effects including TOC elimination, ozone consumption and microtoxicity reduction for combination of photolysis and ozonation compared to those of direct photolysis and ozonation alone on destruction of chlorophenols including 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol were studied. It was found that the synergistic effects of combination of photolysis and ozonation increased obviously with increasing initial pH of solution to basic pH levels. Results showed that the synergistic effects of photolytic ozonation under the conditions imposed was notable with mineralization rate enlarging more than 100%, oxidation index (OI) decreasing 50%, and microtoxicity being reduced by 30%, indicating that the potentialities of photolytic ozonation compared to direct photolysis and ozonation alone was remarkable for treatment of industrial wastewater containing chlorophenols.  相似文献   

16.
Luo Y  Sui YX  Wang XR  Tian Y 《Chemosphere》2008,71(7):1260-1268
In our previous study, electron paramagnetic resonance (EPR) evidence of reactive oxygen species (ROS) production in Carassius auratus following 2-chlorophenol (2-CP) administration was provided. To further investigate the potential pathway of ROS production, liver mitochondria of C. auratus was isolated and incubated with 2-CP for 30 min. An EPR analysis indicated ROS was produced, and intensities of ROS increased with increasing concentrations of 2-CP. The ROS was then assigned OH by comparing with Fenton reaction. Either catalase or superoxide dismutase, extinguished OH completely in the mitochondria mixture. These facts suggested that O2(.-) and H2O2 contributed to the formation of OH in mitochondria in C. auratus stressed by 2-CP. Combining previous references and our own data, it is reasonable to suggest that 2-CP is first oxidized by H2O2 present in vivo to form phenoxyl radical under the catalytic action of cellular peroxidase (1); phenoxyl radical oxidizes mitochondria NADH to NAD in the presence of NADH (2); NAD reacts with oxygen in vivo to produce O2(.-) (3); O2(.-) is spontaneously dismutated by SOD to form H2O2 and O2, which creates a renewable supply of H2O2 as the initiators of the chain reactions until NADH is consumed (4); simultaneously with reaction (4), O2(.-) reacts with H2O2 to form OH radical via the Haber-Weiss reaction (5). A strong negative correlation (r=-0.9278, p<0.01) between glutathione (GSH) pool and OH production was observed after fish were i.p. injected with 2-CP (250 mg kg(-1)), indicating the depletion of GSH caused by OH.  相似文献   

17.
Luo Y  Su Y  Lin RZ  Shi HH  Wang XR 《Chemosphere》2006,65(6):1064-1073
In the present study, a secondary spin trapping technique was used followed by electron paramagnetic resonance (EPR) analysis, to study the potential of reactive oxygen species (ROS) production after fish (Carassius auratus) were injected i.p. with different doses (50, 100, 200, 250, 500mgkg(-1)) of 2-chlorophenol (2-CP). The ROS signal intensity of the EPR spectrum showed a significant increase (p<0.05, compared with the control) when the 2-CP dose was as low as 50mgkg(-1). There is a good relationship between the 2-CP administered doses and ROS generation. Based on the hyperfine splitting constants and shape of the EPR spectrum, the ROS which was generated in fish liver after intraperitoneal (i.p.) injection of 2-CP was identified as ()OH. SOD and CAT activities were found to be induced at lower doses of 2-CP. GSH levels fell below the control level following all treatments with 2-CP, and GSSG levels changed along with those of GSH. These observations indicated that the fish experienced oxidative stress. The strong positive correlation (r=0.966, p<0.005) between ()OH radical and lipid peroxidation suggested that lipid peroxidation was possibly induced by ()OH. The phase II detoxification enzyme glutathione-S-transferase (GST) may play an important role in 2-CP metabolism or excretion and, consequently, reduce ROS production. This study provides strong evidence that level of ROS is significantly increased in 2-CP stressed fish, and ROS may serve as a potential biomarker to indicate 2-CP contamination.  相似文献   

18.
Kim TS  Kim JK  Choi K  Stenstrom MK  Zoh KD 《Chemosphere》2006,62(6):926-933
The photocatalytic degradation of methyl parathion was carried out using a circulating TiO2/UV reactor. The experimental results showed that parathion was more effectively degraded in the photocatalytic condition than the photolysis and TiO2-only condition. With photocatalysis, 10mg/l parathion was completely degraded within 60 min with a TOC decrease exceeding 90% after 150 min. The main ionic byproducts during photocatalysis were measured. The nitrogen from parathion was recovered mainly as NO3-, NO2- and NH4+, 80% of the sulfur as SO4(2-), and less than 5% of the phosphorus as PO4(3-). The organic intermediates 4-nitrophenol and paraoxon were also identified, and these were further degraded. Two different bioassays (Vibrio fischeri and Daphnia magna) were used to test the acute toxicity of solutions treated by photocatalysis and photolysis. A Microtox test using V. fischeri showed that the toxicity, expressed as the relative toxicity (%), was reduced almost completely after 90 min under photocatalysis, whereas only an 83% reduction was achieved with photolysis alone. Another toxicity test using D. magna also showed that the relative toxicity disappeared after 90 min under photocatalysis, whereas there was a 65% reduction in relative toxicity with photolysis alone. The pattern of toxicity reduction parallels the decrease in parathion and TOC concentrations.  相似文献   

19.
Zhihui A  Peng Y  Xiaohua L 《Chemosphere》2005,60(6):824-827
In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.  相似文献   

20.
The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号