首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
ABR除碳-CANON耦合工艺除碳脱氮特性   总被引:2,自引:2,他引:0  
CANON工艺如能处理低氨氮城市生活污水,将大幅度降低市政污水处理能耗.故以纤维载体为填料,在CSTR反应器中同时接种亚硝化污泥和厌氧氨氧化污泥启动CANON反应器,且在CANON系统前端添加ABR除碳系统,构建ABR除碳-CANON耦合工艺,研究ABR除碳-CANON耦合工艺除碳脱氮性能,并采用MiSeq高通量测序技术分析污泥中微生物菌群结构的变化情况.结果表明,通过同时接种亚硝化污泥和厌氧氨氧化污泥,控制DO为0. 5~2 mg·L-1、HRT为6h、p H值为8左右等措施,在55 d内成功启动CANON系统,TN去除率为81%~87%,氨氮负荷为0. 195 kg·(m3·d)-1. ABR除碳系统出水有机物浓度(120 mg·L-1)不会对后续CANON系统产生不利影响,一体式ABR除碳-CANON工艺TN去除率在74%~87%,出水COD平均浓度为40 mg·L-1.同时,CANON系统启动后变形菌门(Proteobacteria)得到了显著提升,鞘脂杆菌纲(Sphingobacteria)所占比例下降为6. 8%,CANON系统中亚硝化菌和厌氧氨氧化菌不断淘汰劣势菌群成为反应器内优势菌群,一体化ABR除碳-CANON工艺对城市污水具有良好的脱氮除碳效果.  相似文献   

2.
CANON工艺如能处理低氨氮城市生活污水,将大幅度降低市政污水处理能耗。故以纤维载体为填料,在CSTR反应器中同时接种亚硝化污泥和厌氧氨氧化污泥启动CANON反应器,且在CANON系统前端添加ABR除碳系统,构建ABR除碳-CANON耦合工艺,研究ABR除碳-CANON耦合工艺除碳脱氮性能,并采用MiSeq高通量测序技术分析污泥中微生物菌群结构的变化情况。结果表明,通过同时接种亚硝化污泥和厌氧氨氧化污泥,控制DO为0.5~2mg·L-1、HRT为6h、pH值为8左右等措施,在55d内成功启动CANON系统,TN去除率为81%~87%,氨氮负荷为0.195kg·(m3·d)-1。ABR除碳系统出水有机物浓度(120mg·L-1)不会对后续CANON系统产生不利影响,一体式ABR除碳-CANON工艺TN去除率在74%~87%,出水COD平均浓度为40mg·L-1。同时,CANON系统启动后Proteobacteria门得到了显著提升,Sphingobacteria纲所占比例下降为6.8%,CANON系统中亚硝化菌和厌氧氨氧化菌不断淘汰劣势菌群成为反应器内优势菌群,一体化ABR除碳-CANON工艺对城市污水具有良好的脱氮除碳效果。  相似文献   

3.
水力停留时间和溶解氧对陶粒CANON反应器的影响   总被引:2,自引:2,他引:0  
王会芳  付昆明  左早荣  仇付国 《环境科学》2015,36(11):4161-4167
以人工配制无机高氨氮废水为进水,通过接种CANON污泥,以陶粒作为填料,研究了HRT和DO对生物膜CANON反应器的影响.试验过程中,控制进水氨氮浓度基本不变,依次控制反应器的HRT为9、7、5 h,同时控制DO的范围为1.16~3.20 mg·L-1.研究发现:1当DO为1.20~1.75 mg·L-1时,尽管提高DO有利于提高AOB的活性和系统内基质的传质效果,但是CANON反应器的NH+4-N、TN去除效果依然随着HRT的缩短而下降,尤其当DO超过2.50 mg·L-1时,TN去除效果大幅度下降;2当DO为1.20~1.75 mg·L-1时,随着HRT的缩短,CANON反应器的短程硝化性能趋于稳定,而当DO超过1.75 mg·L-1时,即使缩短HRT,其短程硝化性能依然遭到严重破坏;3CANON反应器中短程硝化稳定性能和去除效果较佳的条件是HRT为7 h,且DO控制在1.20~1.75 mg·L-1之间.HRT和DO是废水生物处理的重要运行参数,直接影响到生物处理的效果和出水水质,协调控制两者的变化范围,对提高CANON工艺对高氨氮废水的处理效果非常重要.  相似文献   

4.
陶粒CANON反应器的接种启动与运行   总被引:11,自引:8,他引:3  
付昆明  左早荣  仇付国 《环境科学》2014,35(3):995-1001
通过CANON接种污泥,以人工配制无机高氨氮废水为对象,研究以陶粒为填料的CANON反应器启动与运行情况,结果表明:①陶粒可以作为CANON反应器合适填料,温度通过水浴控制在30℃±1℃,HRT为9 h、pH控制在7.00~8.08之间,经过60 d成功启动了CANON反应器,TN的去除负荷达到0.79 kg·(m3·d)-1;②在温度30℃时,陶粒CANON反应器中临界DO范围在1.12~1.69 mg·L-1之间,CANON反应器中短程硝化和厌氧氨氧化性能可维持稳定,高于此范围时,会出现CANON反应器中短程硝化不稳定现象;③在温度25℃,控制DO在1.01~1.54 mg·L-1之间时,尽管NO-3-N变化值与TN变化值的比值(δNO-3-N/δTN)略微偏离理论值0.127,为0.150~0.204,但CANON反应器脱氮性能趋于稳定,TN去除率最高为75.56%,TN的去除负荷最高达到0.97 kg·(m3·d)-1,这意味着CANON工艺的适宜温度范围至少可以降低至25℃.  相似文献   

5.
CANON颗粒污泥工艺的启动与负荷提高策略   总被引:5,自引:4,他引:1  
为缩短工程应用中CANON颗粒污泥工艺的启动时间及提高总氮去除负荷,利用SBR反应器,研究了CANON颗粒污泥工艺启动规律与负荷提高策略.试验过程中,温度控制在30℃±1℃,pH 7~8,根据反应器内污泥形态及脱氮效果,调整沉淀时间及曝气量.结果表明,反应器运行55 d后,实现了絮体和颗粒污泥共生系统向颗粒污泥系统的转变;117 d时,总氮去除负荷达到0.32 kg·(m~3·d)~(-1),并能稳定维持,CANON颗粒污泥工艺启动成功.通过采取不断提高曝气量的方式,运行77 d后,总氮去除负荷能平均维持在1.35 kg·(m~3·d)~(-1),实现了工艺负荷的提高.试验中发现总氮去除负荷和DO之间具有较好的相关性,可以简单地通过观察DO浓度掌握脱氮效能,维持工艺的稳定运行.  相似文献   

6.
有机碳源对启动及运行CANON颗粒污泥工艺的影响   总被引:1,自引:0,他引:1  
李冬  王艳菊  吕育锋  曹瑞华  李帅  张杰 《环境科学》2018,39(3):1294-1300
采用两组平行的SBR反应器R1和R2,通过分别添加有机碳源和不添加有机碳源对比实验,研究有机碳源对全程自养脱氮(CANON)颗粒污泥工艺启动的影响,通过改变有机碳源浓度对比实验,研究有机碳源对CANON工艺运行的影响.结果表明,50 mg·L-1有机物的存在可以加快CANON颗粒污泥工艺的启动,R1和R2分别于23 d和32 d成功启动CANON颗粒污泥工艺.适量有机物(不超过150 mg·L-1)的存在会通过增强亚硝化菌(AOB)及厌氧氨氧化菌(An AOB)的活性和促进反硝化作用来提高氨氮及总氮去除率,R1和R2的最高氨氮和总氮去除率分别为92%、88%和89%、80%.进一步实验表明,过量的有机碳源(超过200 mg·L-1)会抑制AOB及An AOB的活性,从而降低氨氮及总氮去除率,但是会促进反硝化反应并提高其对系统脱氮的贡献率.  相似文献   

7.
为研究同步亚硝化、厌氧氨氧化耦合反硝化(SNAD)工艺在浸没式生物滤池反应器(SBAF)内的运行特性,同时接种亚硝化污泥和富集ANAMMOX的填料启动SNAD反应器.结果表明在60 mg·L~(-1)有机物浓度下,自养脱氮和反硝化实现较好的耦合,并在该浓度下稳定运行了67 d,其总氮去除率最高可达92.0%,COD去除率最高达82.9%,最高总氮去除负荷为2.3 kg·(m~3·d)~(-1).与全程自养脱氮(CANON)工艺相比,SNAD工艺的平均总氮去除率提高了12.6%.荧光定量PCR结果显示,系统启动后AOB菌的丰度有所增长,ANAMMOX菌的丰度增长了1个数量级,而NOB菌和反硝化菌的数量维持在较低水平(小于10~7 copies·g~(-1)),表明以火山岩为填料的浸没式生物滤池反应器有利于ANAMMOX和AOB的协同生长,可快速实现SAND工艺的启动.  相似文献   

8.
采用稳定运行的CANON颗粒污泥,探究不同DO浓度对CANON工艺脱氮性能的影响.结果表明,当DO小于0.46mg/L时,CANON反应器可在连续曝气方式下运行.随着DO从0mg/L升高至0.46mg/L,系统脱氮速率从0提高到50.88mg N/(L·h);当DO大于0.46mg/L时,CANON反应器必须以间歇曝气方式运行;随着DO从0.46mg/L升高至2.8mg/L,系统脱氮速率从50.88mg N/(L·h)降低为41.84mg N/(L·h).CANON反应器在DO为0.46mg/L时脱氮速率最高,达到50.88mg N/(L·h),污泥脱氮负荷为0.45kg N/(kg MLSS·d).CANON颗粒污泥大小及结构对AOB和anammox菌的活性影响较大:由于液相向颗粒污泥的传质阻力,AOB的DO半饱和常数为0.77mg/L;而对于anammox菌,当DO小于0.46mg/L时,随DO浓度上升,其活性下降缓慢;当DO大于0.46mg/L时,随DO浓度上升,其活性迅速下降;当DO超过1.0mg/L时,anammox菌接近失活.  相似文献   

9.
生物膜短程硝化系统的恢复及其转化为CANON工艺的过程   总被引:10,自引:9,他引:1  
在温度为30℃±1℃条件下,以改性聚乙烯为填料,人工配置无机NH+4-N废水为进水,研究生物膜短程硝化系统的恢复过程.短程硝化首先通过过量曝气破坏,使NOB适应高浓度游离氨后,在连续曝气条件下,DO控制在0.5 mg·L~(-1)以下,FA控制在1.5 mg·L~(-1)以上,维持反应器运行83 d未实现短程硝化,84 d改连续曝气为间歇曝气,出现NO-2-N积累现象,142 d再次验证这一规律.随着反应器的运行,生物膜系统中为ANAMMOX菌提供了生存环境,厌氧氨氧化作用产生,短程硝化系统逐步转化为CANON工艺,并逐渐增加进水NH+4-N浓度和进水流量,反应器的TN去除率与TN去除负荷逐渐提高.当反应器运行至450 d,TN去除率达到64.03%,去除负荷为2.52 kg·(m~3·d)~(-1).因此,一旦NOB适应了高浓度的游离氨,生物膜系统的短程硝化恢复不易实现,但间歇曝气是一个有效的方法,随着反应器的连续运行,短程硝化工艺最终转化为CANON工艺,而且,这一转变进一步强化了短程硝化的稳定性.  相似文献   

10.
氨氮浓度对CANON工艺性能及微生物特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为了考察氨氮浓度对CANON反应器启动过程、运行性能及微生物特性的影响,在2个相同的常温MBR反应器内同时接种取自城市污水厂的普通活性污泥,在限氧条件下启动CANON工艺.其中R1进水氨氮保持80mg/L不变,通过逐渐减小HRT启动,R2则保持HRT不变,通过逐渐增加进水氨氮启动.启动成功后,2个反应器分别在不同氨氮浓度下稳定运行相同时间后,取泥样做扫描电镜观察反应器内微生物形态.同时采用克隆-测序分析技术对2个反应器内全细菌进行16S rRNA分析,鉴定反应器内功能微生物种属.结果表明,R1和R2的启动时间分别为78,50d.TN去除负荷分别达到0.9,0.7kg/(m3·d)以上.反应速率测定结果表明,高氨氮运行的反应器内亚硝化菌和厌氧氨氧化菌具有较高的活性,NOB被抑制或淘洗的较为彻底.SEM及克隆测序结果表明,2个反应器中的功能微生物均为亚硝化单胞菌和待定斯图加特库氏菌,R1中存在少量硝化杆菌,而R2中几乎检测不到硝化菌.因此,高氨氮下运行的反应器具有更高的活性及稳定性.  相似文献   

11.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

12.
Fe2+和Fe3+对厌氧氨氧化污泥活性的影响   总被引:3,自引:2,他引:1  
李祥  黄勇  巫川  王孟可  袁怡 《环境科学》2014,35(11):4224-4229
通过接种厌氧氨氧化污泥研究了Fe离子浓度及价态变化对厌氧氨氧化污泥活性的影响.短期浓度影响结果表明,当进水铁离子浓度由0升高到5 mg·L-1时,厌氧氨氧化污泥活性因受刺激而逐渐增强;当进水铁离子浓度大于5 mg·L-1时,因厌氧氨氧化反应产碱,铁离子形成氢氧化物沉淀,生物活性未受到影响.不同价态铁离子浓度变化对厌氧氨氧化污泥活性的影响无明显区别.长期价态影响结果表明,经过71个周期培养,含Fe2+进水的厌氧氨氧化反应器R1脱氮效能(以氮计)由0.28 kg·(m3·d)-1升高到0.65 kg·(m3·d)-1,是含Fe3+进水反应器R2的1.28倍.因此Fe2+更适合厌氧氨氧化菌生长的需求.实验结果进一步表明,Fe3+易导致厌氧氨氧化反应器R2内氨氮过量转化,亚硝氮与氨氮转化比(1.17)明显低于含Fe2+进水的反应器R1内亚硝氮与氨氮转化比(1.24).  相似文献   

13.
目前运行容易失稳已成为制约厌氧氨氧化(ANAMMOX)工艺应用的因素之一.在保证底物不抑制的条件下,通过对实验室前期运行失稳的连续流全混反应器(CSTR)中的厌氧氨氧化污泥进行活性恢复,研究了滞留的基质浓度对ANAMMOX污泥恢复过程中颗粒化及活性的影响.结果表明,经过126d运行,ANAMMOX污泥活性获得恢复且脱氮能力明显提升.控制高、低基质浓度水平的2个反应器均能实现污泥的颗粒化及氮素的高效去除,NRR最大分别达到16. 97 kg·(m~3·d)~(-1)和14. 43 kg·(m~3·d)~(-1).随着反应器脱氮能力的提高(污泥颗粒粒径增大),R1、R2两个反应器内污泥的胞外聚合物EPS含量(以VSS计)均增大,分别由接种时的34. 45 mg·g~(-1)增大至77. 52 mg·g~(-1)和94. 18 mg·g~(-1),PN/PS由1. 89分别增大到6. 25和6. 84.在一定范围内,PN/PS比值增大有利于ANAMMOX污泥颗粒化,但PN/PS过大会导致颗粒污泥结构失稳上浮,加剧污泥流失现象.  相似文献   

14.
左富民  郑蕊  隋倩雯  钟慧  陈彦霖  魏源送 《环境科学》2021,42(11):5472-5480
以两类中试反应器(SBR,116.6 m3,活性污泥法和SBBR,64.8 m3,泥膜法)为对象,接种猪场废水处理厂的活性污泥,通过控制DO、曝气方式为主和外加NaNO2为辅的亚硝酸盐调控策略,考察不同反应器在启动一体式短程硝化-厌氧氨氧化(combined partial nitritation and ANAMMOX,CPNA)工艺过程中NO2--N浓度对ANAMMOX菌的影响.结果表明,在相同运行条件下,泥膜共生的SBBR更适于短程硝化的快速启动.尽管受到NO2--N抑制(100~129 mg ·L-1,共计7 d),但SBR在第39 d成功启动了ANAMMOX工艺,其TNRR和TNRE分别为0.069 kg ·(m3 ·d)-1和23.3%,而长达17 d的NO2--N抑制(129~286 mg ·L-1)则对SBBR中ANAMMOX菌活性造成了难以恢复的影响.外加NaNO2后,SBR在第77 d成功启动了CPNA工艺,TNRR和TNRE分别从第51 d的0.070 kg ·(m3 ·d)-1和16.0%迅速提高至第77 d的0.336 kg ·(m3 ·d)-1和52.2%,ANAMMOX菌的活性也由最初的0.012 kg ·(kg ·d)-1快速升高至第77 d的0.307 kg ·(kg ·d)-1;SBR中AOB和ANAMMOX菌的基因拷贝数浓度由最初的8.06×106 copies ·mL-1和4.42×104 copies ·mL-1分别增长至第77 d的1.02×109 copies ·mL-1和1.77×107 copies ·mL-1,表明以调控DO和曝气方式为主,辅以外加NaNO2的亚硝酸盐调控策略可有效实现反应器中AOB和ANAMMOX菌的快速增长.合理的NO2--N调控是CPNA工艺快速启动的关键因素.  相似文献   

15.
制革废水的厌氧氨氧化ABR脱氮工艺研究   总被引:4,自引:4,他引:0  
曾国驱  贾晓珊 《环境科学》2014,35(12):4618-4626
采用小试规模的厌氧折流板反应器(ABR)研究制革废水的厌氧氨氧化脱氮.结果表明,ABR可作为实现厌氧氨氧化的良好反应器,厌氧氨氧化ABR反应器能有效和稳定地处理制革废水.当进水NH+4-N为25.0~76.2 mg·L-1、COD为131~237 mg·L-1,NH+4-N容积负荷为0.05~0.15 kg·(m3·d)-1时,出水NH+4-N为0.20~7.12 mg·L-1、COD为35.1~69.2mg·L-1,去除率分别达到90.8%~99.6%和66.9%~74.7%.此外,厌氧氨氧化ABR反应器污泥在驯化和运行过程中形成了棕红色、棕黄色和红色的颗粒污泥.电镜扫描观察证实在厌氧氨氧化ABR反应器的4个隔室的颗粒污泥中均存在厌氧氨氧化菌.荧光原位杂交(FISH)检测结果显示厌氧氨氧化菌在驯化和运行过程中出现不同程度的增殖,厌氧氨氧化ABR反应器4个隔室的污泥中厌氧氨氧化菌所占比率分别由4%增加到9%、8%、12%和30%,呈现出前段隔室少、后段隔室多的分布规律.  相似文献   

16.
基质暴露水平对ANAMMOX微生物的生长代谢有着重要意义,目前关于基质暴露水平对ANAMMOX污泥长期富集过程中生长特性的研究少有报道.采用两个连续流搅拌反应器,在逐步提升进水负荷的过程中,研究了高基质暴露水平培养方式(R1:出水NH_4~+-N和NO_2--N浓度均为40~60 mg·L~(-1))与低基质暴露水平培养方式(R~2:出水NH_4~+-N和NO_2--N浓度均为0~20 mg·L~(-1))对ANAMMOX微生物生长量和生物活性,以及反应器脱氮效能的影响及机制.结果表明,高基质暴露水平培养方式更有利于ANAMMOX反应器脱氮性能的提升.相比之下,高基质暴露水平培养方式下获得的NLR [0. 69 kg·(m~3·d)~(-1)]和NRR [0. 41 kg·(m~3·d)~(-1)]分别是低基质暴露水平培养方式的2倍;高基质暴露水平培养方式下,ANAMMOX污泥浓度(以VSS计)和总基因拷贝数分别达到1805 mg·L~(-1)和4. 81×1012copies,更有利于ANAMMOX微生物的快速富集培养;低基质暴露水平培养方式下,ANAMMOX污泥的活性更强[以N/VSS计,0. 27 g·(g·d)~(-1)],有利于富集生物活性更高的ANAMMOX污泥.  相似文献   

17.
一段式亚硝化厌氧氨氧化SMBBR处理中低浓度氨氮废水   总被引:2,自引:1,他引:1  
在常温条件下,采用一段式亚硝化厌氧氨氧化SMBBR处理中低氨氮浓度废水.结果表明,在进水氨氮浓度为100 mg·L-1,溶解氧为0.4~0.7 mg·L-1条件下,负荷(以N计)为0.16 kg·(m3·d)-1,去除率可达(51.58±6.80)%,实现了一段式亚硝化厌氧氨氧化的稳定运行.AOB、ANAMMOX和NOB活性分别稳定在(2253.21±502.10)、(4847.46±332.89)和(1455.17±473.83)mg·(m2·d)-1,AOB和ANAMMOX菌之间形成了良好的协同作用.高通量结果显示,Ca.Brocadia(ANAMMOX)、Nitrosomonas(AOB)和Nitrospira(NOB)占比分别为11.57%、1.01%和0.94%.一段式部分亚硝化厌氧氨氧化工艺的稳定运行为厌氧氨氧化技术处理中低浓度氨氮废水提供了参考.  相似文献   

18.
磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响   总被引:1,自引:0,他引:1  
周正  刘凯  王凡  林兴  李祥  黄勇  顾澄伟 《环境科学》2017,38(6):2453-2460
通过接种厌氧氨氧化污泥,研究了磷酸盐浓度变化对厌氧氨氧化活性污泥脱氮效能长短期的影响,对其抑制动力学参数进行拟合,并基于荧光定量PCR的测定,分析了受磷酸盐抑制前后反应器中厌氧氨氧化细菌丰度的变化.短期研究结果表明,磷酸盐浓度小于30 mg·L~(-1)对厌氧氨氧化污泥的脱氮效能没有明显的影响;随着进水磷酸盐浓度的升高,氮去除速率呈加速下降趋势;磷酸盐浓度大于200 mg·L~(-1)时,厌氧氨氧化污泥活性达到完全的抑制状态;采用Haldane抑制模型拟合磷酸盐抑制的动力学参数,所得半抑制常数为70.1 mg·L~(-1).长期研究结果表明,磷酸盐浓度小于50 mg·L~(-1)时,对厌氧氨氧化污泥脱氮效能的影响不大;磷酸盐浓度在70~90 mg·L~(-1)时,厌氧氨氧化污泥活性开始受到明显影响,经过一段时间可以有所恢复,但磷酸盐浓度越高,恢复所需时间越长;当磷酸盐浓度达到100 mg·L~(-1)时厌氧氨氧化污泥的脱氮效能受到严重抑制,氮去除速率由158.33 g·(m~3·d)~(-1)下降至60.17 g·(m~3·d)~(-1)左右,抑制约62%.荧光定量PCR结果表明,抑制后的污泥体系中ANAMMOX菌细胞浓度由(9.97±0.86)×107cells·m L~(-1)下降至(8.26±0.54)×107cells·m L~(-1),有相对减少的趋势.  相似文献   

19.
王嗣禹  刘灵婕  王芬  季民 《环境科学》2019,40(12):5430-5437
溶解氧(DO)是控制短程硝化的重要因素,其对不同的生物处理系统有不同的影响.本文研究了DO对悬浮污泥及生物膜系统短程硝化效果的影响,并利用高通量测序技术分析了微生物群落结构变化.结果表明,对于悬浮污泥系统,当DO从0. 25 mg·L~(-1)增加到0. 50 mg·L~(-1)时,氨氧化速率(AOR)从18. 08 mg·(L·h)-1升高至30. 27 mg·(L·h)-1;当曝气继续增加,DO达到3. 00 mg·L~(-1),仅运行14 d,进水氨氮(NH_4+-N)基本全部转化为硝酸盐氮(NO_3--N),且通过降低DO来恢复短程硝化效果需77 d,恢复过程缓慢.对于生物膜系统,DO由2. 50 mg·L~(-1)上升到3. 00 mg·L~(-1)的过程中,AOR稳定在11. 50~13. 50mg·(L·h)-1,当DO为3. 00 mg·L~(-1)时,80 d的运行结果显示,出水中氨氮与亚硝酸盐氮(NO_2--N)的比值可长期稳定在1∶1. 2~1∶1. 7,基本满足ANAMMOX工艺进水要求.微生物群落结构分析结果表明,悬浮污泥系统在DO从0. 25 mg·L~(-1)增加到3. 00 mg·L~(-1)的过程中,主要氨氧化菌(AOB)菌属Nitrosomonas丰度由10. 07%增长至18. 64%.当DO为3. 00 mg·L~(-1)时,生物膜系统中Nitrosomonas菌属丰度与悬浮污泥系统相近为20. 43%,且生物膜系统富集了0. 78%的ANAMMOX菌属Candidatus_Kuenenia.综上,生物膜系统内DO的变化受曝气量影响较小,短程硝化效果受DO影响较小,短程硝化速率更稳定,更适合作为ANAMMOX脱氮工艺的前处理单元.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号