首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of two wetland plants, Typha latifolia L. (cattail) and Phragmites australis (Cav.) Trin. ex Steud (common reed), on the fate of Cr(VI) in wetland sediments was investigated using greenhouse bench-scale microcosm experiments. The removal of Cr(VI) was monitored based on the vertical profiles of aqueous Cr(VI) in the sediments. The Cr(VI) removal rates were estimated taking into account plant transpiration, which was found to significantly concentrate dissolved species in the sediments. After correcting for evapotranspiration, the actual Cr(VI) removal rates were significantly higher than would be inferred from uncorrected profiles. On average, the Cr(VI) removal rates were 0.005 to 0.017 mg L(-1) d(-1), 0.0003 to 0.08 mg L(-1) d(-1), and 0.004 to 0.13 mg L(-1) d(-1) for the control, T. latifolia, and P. australis microcosms, respectively. The fate of the removed Cr(VI) was examined by determining the quantity and chemical speciation of the Cr in the sediment and plant materials. Chromium(III) was the dominant form of Cr in both the sediment and plants, and precipitation of Cr(III) in the sediment was the major pathway responsible for the disappearance of aqueous Cr(VI) from the pore water. Incubation results showed that abiotic reduction was the primary mechanism underlying Cr(VI) removal in the microcosm sediments. Organic compounds produced by plants, including root exudates and mineralization products of dead roots, are thought to be the factor that is either directly or indirectly responsible for the gap between Cr(VI) removal efficiencies in the sediments of the vegetated and unvegetated microcosms.  相似文献   

2.
In many freshwater ecosystems, the contents of NO3- and SO4(2-) have increased, whereas O2 has been depleted due to the increased acid and nutrient loads. These changes may affect carbon turnover and the dynamics of the major greenhouse gases CO2, CH4, and N2O. We studied the effects of O2, NO3-, and SO4(2-) availability on carbon mineralization, and fluxes of CO2, CH4, and N2O in the sediments of hyper-eutrophic Lake Kev?t?n, Finland. Undisturbed sediment cores from the deep (9 m) and shallow (4 m) profundal were incubated in a laboratory microcosm with oxic and anoxic water flows with NO3- or SO4(2-) concentrations of 0, 30, 100, 300, and 2000 microM. The carbon mineralization rate (i.e., the sum of released CO2-C and CH4-C) was not affected by the oxidants. However, the oxidants did change the pathways of carbon degradation and the release of CH4. All of the oxidants depressed CH4 fluxes in the shallow profundal sediments, which had low organic matter content. In the deep profundal sediments rich in organic matter, the CH4 release was reduced by O2 but was not affected by SO4(2-) (the effect of NO3- was not studied). There was an increase in N2O release as the overlying water NO3- concentration increased. Anoxia and highly elevated NO3- concentrations, associated with eutrophication, increased drastically the global warming potential (GWP) of the sedimentary gases in contrast to the SO4(2-) load, which had only minor effects on the GWP.  相似文献   

3.
Maximum rates of nitrate removal in a denitrification wall   总被引:3,自引:0,他引:3  
Denitrification walls are constructed by mixing a carbon source such as sawdust into soils through which ground water passes. These systems can reduce nitrate inputs to receiving waters by enhancing denitrification. Maximum rates of nitrate removal by denitrification need to be determined for design purposes. To determine maximum rates of nitrate removal we added excess nitrate (50 mg N L(-1)) to a trench up-gradient of a denitrification wall during a 9-d trial. Bromide (100 g L(-1)) was also added as a conservative tracer. Movement of nitrate and bromide was measured from shallow wells and soil samples were removed for measurements of denitrification, carbon availability, nitrate, and other microbial parameters. Rates of nitrate removal, determined from the ratio of NO3-N to Br and ground water flow, averaged 1.4 g N m(-3) of wall d(-1) and were markedly greater than denitrification rates determined using the acetylene block technique (average: 0.11 g N m(-3) of wall d(-1)). These nitrate removal rates were generally lower than reported in other denitrification walls. Denitrification rates increased when nitrate was added to the laboratory incubations, indicating that despite large nitrate inputs in the field, denitrification remained limited by nitrate. This limitation was partially attributed to nitrate predominantly moving through zones of greater hydraulic conductivity or in the mobile fraction of the ground water and slow diffusion to the immobile fraction where denitrifiers were active.  相似文献   

4.
In two sulfide-rich freshwater sediments from the Biesbosch and Kromme Rijn River in the Netherlands differing in carbonate content and acid volatile sulfide (AVS) content, metal and sulfide dissolution kinetics were studied at different acid concentrations by varying both the procedure of acid addition and the extraction time. The establishment of equilibrium was monitored by measuring the pH in time, which reached a near constant value. The equilibrium pH was reached quickly when large amounts of acid were added and slowly when small amounts of acid were added. This observation was confirmed by the yield of extracted metals after either a 45-min or 24-h extraction over a pH range from 0 to 5. The pH factor seemed to be of more influence than time for the dissolution of metals. The amount of extracted metals was highly dependent on the metal itself due to its physico-chemical behavior. Although the sediments studied varied in carbonate content, acid volatile sulfide (AVS), and total metal content, the extracted fraction of metals compared with their total content in the sediment was similar for most metals. Finally, the AVS content as well as the ratio of simultaneously extracted metals (SEM; sum of Cd, Cu, Ni, Pb, and Zn) to AVS decreased with increasing pH. Because the SEM to AVS ratio may be used to set environmental quality criteria for the sediment compartment, this observation is of significance.  相似文献   

5.
A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. L?ve & D. L?ve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the sediment, 2% in the fallen litter, < 1% in the standing plants, and < 1% in the surface water. Thus, about 6% of the total Se inflow was unaccounted for in the internal compartments.  相似文献   

6.
A close relationship has been reported between sediment organic C (SedOC) content and its P sorption capacity (P(max)) and total P (TP) concentration. Phosphorus sorbed to organically complexed cations is a proposed explanation for this relationship. The objectives of this study were (i) to determine relationships between in-stream wetland SedOC content and both the sediment's P(max) and TP concentrations, and (ii) to ascertain the role of both organically complexed and oxalate-extractable cations on the sediment P(max) and TP values. The sediment's oxalate-extractable Fe (Fe(ox)) and Al (Al(ox)) contents were determined using acidified ammonium oxalate, while sodium pyrophosphate was used to extract organically complexed cations (Al(pryo), Ca(pyro), Fe(pyro), Mg(pyro), and Mn(pyro)). Both the sediment's P(max) and TP contents were strongly correlated with its SedOC concentration (r(2) > 0.90, P < 0.001). Only the Al(ox) contents were significantly correlated with TP and P(max), suggesting that amorphous Al forms have an important role in P sorption. All five pyrophosphate-extracted cations were significantly correlated with SedOC contents. Regression analyses showed that the Al(pyro) accounted for 88% of the variation in sediment P(max) values, whereas a combination of Al(pyro) and Ca(pyro) accounted for 98% of the variation in sediment TP concentrations. Additionally, Al and Ca chelated by SedOC compounds also have an important role in P binding and indicate that a linkage exists between the wetlands SedOC and P(max) content and its ability to accumulate TP. This study identified that two different mechanisms have significant roles in regulating P sorption by sediments in a southeastern Coastal Plain in-stream wetland.  相似文献   

7.
Phosphorus removal in a wetland constructed on former arable land   总被引:1,自引:0,他引:1  
Phosphorus in surface runoff water may cause eutrophication of recipient water. This study clarifies the mechanisms of P removal in the wetland of Hovi, Finland, constructed on arable land in 1998. Before the construction, the surface soil (removed in the construction) and subsoil (the current wetland bottom) were analyzed for Al and Fe oxides (Al(ox) and Fe(ox)) reactive in P sorption, and for the distribution of P between various pools as well as for P exchange properties. Retention of P from runoff water within the wetland was studied from 1999 to 2001 in situ and factors affecting the P removal (O2 availability and P concentration in water) were investigated in a laboratory microcosm. The processes taking place in the wetland diminished by 68% the total P load and by 49% the dissolved reactive P load. Desorption-sorption tests indicated that without removal of the surface soil, there would have been a risk of the wetland being a source of P, since the equilibrium P concentration of the soil removed was high compared with the mean P concentration of the inflowing water. The subsoil contained less P and high amounts of reactive oxides, which could bind P. Evidently, the P sorption by Al(ox) played an important role in a first phase removal of P, since the wetland retained P efficiently even under anoxic conditions, where Fe tends to be reduced. Fine-textured, mineral soil on the bottom of the wetland (subsoil of the former arable land) seemed to be very efficient in retaining P from agricultural runoff.  相似文献   

8.
The increased use of pesticides by container nurseries demands that practices for removal of these potential contaminants from runoff water be examined. Constructed wetlands may be designed to clean runoff water from agricultural production sites, including container nurseries. This study evaluated 14 constructed wetlands cells (1.2 by 4.9 m or 2.4 by 4.9 m, and 30 or 45 cm deep) that collected pesticide runoff from a 465-m2 gravel bed containerized nursery in Baxter, TN. One-half of the cells were vegetated with bulrush, Scirpus validus. The cells were loaded at three rates or flows of 0.240, 0.120, and 0.060 m3 d(-1). Herbicides-simazine (Princep) [2-chloro-4,6-bis(ethylamino)-s-triazine] and metolachlor (Pennant) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-2-methoxy-1-methylethyl-acetamide] -were applied to the gravel portion of the container nursery at rates of 4.78 and 239 kg ha(-1), respectively, 9 July 1998, and at rates of 2.39 and 1.19 kg ha(-1), respectively, 17 May 1999. Pesticides entering the wetland and wetland cell water samples were analyzed daily to determine pesticide removal. At the slower flow rate, which corresponds to lower mass loading and greater hydraulic retention times (HRTs), a greater percentage of pesticides was removed. During the 2-yr period, cells with plants removed 82.4% metolachlor and 77.1% simazine compared with cells without plants, which removed 63.2% metolachlor and 64.3% simazine. At the lowest flow rate and mass loading, wetland cells removed 90.2% metolachlor and 83% simazine. Gravel subsurface flow constructed wetlands removed most of the pesticides in runoff water with the greatest removal occurring at lower flow rates in vegetated cells.  相似文献   

9.
Agricultural runoff carries high nutrient loads to receiving waters, contributing to eutrophication. Managed wetlands can be used in integrated management efforts to intercept nutrients before they enter downstream aquatic systems, but detailed information regarding sorption and desorption of P by wetland sediments during typical inundation cycles is lacking. This study seeks to quantify and elucidate how inundation of wetland sediments affects bioavailability of P and contributions of P to downstream systems. A managed wetland cell in Tunica County, Mississippi was subjected to a simulated agricultural runoff event and was monitored for bioavailable phosphorus (water-extractable P [P], Fe-P, and Al-P) of wetland sediments and water level during the runoff event and for 130 d afterward. Inundation varied longitudinally within the wetland, with data supporting significant temporal relationships between inundation and P desorption. Concentrations of P were significantly higher at the site that exhibited variable hydroperiods (100 m) as compared with sites under consistent inundation. This suggests that sites that are inundated for longer periods of time desorb less P immediately to the environment than sites that have periodic or ephemeral inundation. Concentrations of iron oxalate and NaOH-P were significantly higher at the least inundated site as compared with all other sites (F = 5.43; = 0.001) irrespective of time. These results support the hypothesis that increased hydraulic residence time decreases the bioavailability of P in wetland sediments receiving agricultural runoff. This finding suggests that the restoration of wetlands in the mid-southern United States may be hydrologically managed to improve P retention.  相似文献   

10.
Few studies have measured removal of pollutants by restored wetlands that receive highly variable inflows. We used automated flow-proportional sampling to monitor the removal of nutrients and suspended solids by a 1.3-ha restored wetland receiving unregulated inflows from a 14-ha agricultural watershed in Maryland, USA. Water entered the wetland mainly in brief pulses of runoff, which sometimes exceeded the 2500-m3 water holding capacity of the wetland. Half of the total water inflow occurred in only 24 days scattered throughout the two-year study. Measured annual water gains were within 5% of balancing water losses. Annual removal of nutrients differed greatly between the two years of the study. The most removal occurred in the first year, which included a three-month period of decreasing water level in the wetland. In that year, the wetland removed 59% of the total P, 38% of the total N, and 41% of the total organic C it received. However, in the second year, which lacked a drying period, there was no significant (p > 0.05) net removal of total N or P, although 30% of the total organic C input was removed. For the entire two-year period, the wetland removed 25% of the ammonium, 52% of the nitrate, and 34% of the organic C it received, but there was no significant net removal of total suspended solids (TSS) or other forms of N and P. Although the variability of inflow may have decreased the capacity of the wetland to remove materials, the wetland still reduced nonpoint-source pollution.  相似文献   

11.
This work addressed effects of hydrology on biogeochemical processes relevant to pollutant chemical transformation in wetland sediments. Microcosms were designed to impose three hydrologic conditions on salt marsh sediments: (i) drained-oxidized redox potenial (Eh); (ii) flooded-reduced Eh and, (iii) diurnal tide-oscillating Eh. The test chemicals were N- and/or S-heterocycles (NSHs) including quinoxaline (1,4-benzodiazine), 2-methylquinoxaline(2-methyl-1,4-benzodiazine), 2,3-dimethylquinoxalinen (2,3-dimethyl-1,4-benzodiazine), phenazine (2,3,5,6-dibenzo-1,4-diazine), acridine (2,3,5,6-dibenzopyridine), dibenzothiophene (2,3,5-dibenzothiophene), phenothiazine (dibenzo-1,4-thiazine), and phenanthridine (2,3-benzoisoquinoline). Biogeochemical processes reflected the hydrologic conditions in ways analogous to field settings, e.g., Eh characteristics were drastically different: static (flooded and drained) systems had reduced (mu = -428 mV +/- 57) and oxidized (mu = +73 mV +/- 32) values, respectively, with no evidence of periodic variation while the tidal systems exhibited regularly oscillating Eh (amplitudes 40-250 mV). Sediment trace gases also corresponded to the Eh, with the major species detected being CO2 and H2O (drained, tidal) vs. CO2 + H2O + sulfides + methane (flooded). The NSH transformation rates were different in each hydrologic regime and decreased as follows: tidal > or = drained > flooded. These results indicated that there were subtle differences in NSH processing in drained and tidal systems, but both of these systems transformed NSHs faster and to lower levels than flooded sediments. These data suggest that in situ remediation options that preserve wetland integrity and tidal hydrology can be as or more effective than static conditions that obtain in approaches such as impoundment and excavation-upland placement.  相似文献   

12.
The desorption of antimony, Sb(V), from two sediment samples by phosphate, carbonate, sulfate, chloride, and nitrate at pH 8 was examined. One highly contaminated sediment sample was taken from an Sb mine (Goesdorf, Luxembourg); the other sample was the certified reference material PACS-2 (marine sediment). Phosphate was found to have a strong mobilizing ability, whereas that of carbonate was in general weaker. For comparison, and to understand better the possible importance of individual components of the sediments, desorption experiments were performed on pure phases (i.e., hydrous oxides of Fe, Mn, and Al) and the clay minerals kaolinite and montmorillonite. In the cases of hydrous metal oxides, Sb(V) was most effectively desorbed by phosphate, followed by carbonate. Phosphate also desorbed Sb(V) from the clay minerals, whereas carbonate had no effect. The pH dependence of adsorption of Sb(V) in the absence and presence of carbonate revealed that adsorption densities were higher (except in the case of montmorillonite) in the absence of carbonate, suggesting a competition between carbonate and [Sb(OH)] for surface sites generally and a lowering of surface charge in the case of hydrous aluminum oxide. The observations are unlikely to be due to ionic strength effects because activity coefficients in the blank and spiked solutions differ by <4%. Desorption experiments on sediments with varying concentrations of phosphate and carbonate demonstrated that at environmentally relevant concentrations, desorption by phosphate is negligible, whereas the effect of carbonate is not. Sulfate, chloride, and nitrate generally had little effect. The proportion of Sb desorbed in blank experiments coincides with that mobilized in the first fraction of the Bureau Communautaire de Référence (BCR) sequential extraction (easily exchangeable and carbonate-bound fraction).  相似文献   

13.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

14.
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 +/- 4.6, 30.2 +/- 8.9, and 59.3 +/- 26.1 mg kg(-1) in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 +/- 3.0 mg kg(-1)) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg(-1) of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.  相似文献   

15.
A wetland mesocosm experiment was conducted in eastern North Carolina to determine if organic matter (OM) addition to soils used for in-stream constructed wetlands would increase NO3--N treatment. Not all soils are suitable for wetland substrate, so OM addition can provide a carbon and nutrient source to the wetland early in its development to enhance denitrification and biomass growth. Four batch studies, with initial NO3--N concentrations ranging from 30 to 120 mg L-1, were conducted in 2002 in 21 surface-flow wetland mesocosms. The results indicated that increasing the OM content of a Cape Fear loam soil from 50 g kg-1 (5% dry wt.) to 110 g kg-1 (11% dry wt.) enhanced NO3--N wetland treatment efficiency in spring and summer batch studies, but increases to 160 g kg-1 (16% dry wt.) OM did not. Wetlands constructed with dredged material from the USACE Eagle Island Confined Disposal Facility in Wilmington, NC, with initial OM of 120 g kg-1 (12% dry wt.), showed no improvement in NO3--N treatment efficiency when increased to 180 g kg-1 (18% dry wt.), but did show increased NO3--N treatment efficiency in all batch studies when increased to 220 g kg-1 (22% dry wt.). Increased OM addition and biosolids to the Cape Fear loam and dredged material blends significantly increased biomass growth in the second growing season when compared to no OM addition. Results of this research indicate that increased OM in the substrate will reduce the area required for in-stream constructed wetlands to treat drainage water in humid regions. It also serves as a demonstration of how dredged material can be used successfully in constructed wetlands, as an alternative to costly storage by the USACE.  相似文献   

16.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

17.
The level of water was manipulated in a freshwater wetland, with the aim of enhancing abundances of benthic animals and, ultimately, improving habitat for feeding birds (Japanese Snipe, Gallinago hardwickii). We tested whether these actions had the predicted and desired effects on benthic animals, by contrasting changes in two managed locations to one control location which was left unmanipulated. The number of taxa and abundances of chironomids decreased strongly and significantly in the manipulated locations, while the abundance of oligochaetes appeared to vary in a seasonal manner. Temporal variability of the structure and composition of assemblages was also increased in manipulated locations. Such effects have previously been suggested to indicate stress in benthic assemblages. Therefore, in contrast to what was predicted, managerial actions made benthic fauna less abundant and thus, less suitable as habitat for feeding birds. Several general lessons can be learned from these results. (1) Effects of managerial actions like these are difficult to predict a priori and can only be reliably evaluated with an experimental framework. (2) Because abundances of animals vary naturally, evaluations of managerial actions must include appropriate spatial replication. (3) Sampling at hierarchical temporal scales is important, because abundances of animals may vary in an unpredictable manner at short temporal scales and because changes in temporal variability may be a symptom of stress. (4) Combined use of uni- and multivariate techniques provides a comprehensive set of tools to assess the effects of restoration and creation of new habitats. Finally, these results emphasise the need for clear predictions about desired outcomes and specific experimental plans about how to test whether the desired results were achieved, before managerial actions are taken. Although this is often very difficult to achieve in real situations, it is necessary for practices of management to evolve on the basis of sound empirical experience.  相似文献   

18.
A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes.  相似文献   

19.
A laboratory study was conducted to investigate the efficiency of hydroxyapatite (HAP) towards removal of nitrate from synthetic nitrate solution. In the present research HAP synthesized from egg-shell was characterized using SEM, XRD, FTIR and TGA–DSC. The removal of nitrate was 96% under neutral conditions, using 0.3 g of adsorbent in 100 mL of nitrate solution having an initial concentration of 100 mg/L. An adsorption kinetic study revealed that the adsorption process followed first order kinetics. Adsorption data were fitted to a linearly transformed Langmuir isotherm with correlation coefficient (R2) > 0.98. Thermodynamic parameters were also calculated to study the effect of temperature on the removal process. In order to understand the adsorption type, equilibrium data were tested with the Dubinin–Radushkevich isotherm. The process was rapid and equilibrium was established within the first 40 min.  相似文献   

20.
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 °C using different COD/[SO(4)(2-)] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 °C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 °C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号