首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Site-specific or soil type-specific ambient background concentrations (ABCs) of trace metals in soils are needed for risk assessment. We investigated three different methods for estimating ABCs in soils using a dataset of 5691 soil samples from England and Wales. The concentrations of Co, Cr and Ni were strongly associated with Al and Fe, and multiple regressions explained 62-85% of their variation, and Al and Fe can therefore be used to predict ABCs for these metals. Soil texture had a major influence on the concentrations of Cd, Co, Cr, Cu, Ni and Zn, and the medians were 3-5 fold higher in clayey than in sandy soils. This was used to predict texture-specific ABCs. Lead concentration was higher in acidic peaty soils than in other soils. A probability graph method was used to estimate ABC for Pb in a population of relatively uncontaminated soils. Potential applications of ABCs are discussed.  相似文献   

2.
Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg(-1)), Tampa soil was also contaminated with As (230 mg kg(-1)). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO3. The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation.  相似文献   

3.
以某有色金属冶炼企业排放口下游河道底泥为研究对象,分别采用无机酸(盐酸、硫酸、硝酸)和有机酸(醋酸、柠檬酸、苹果酸和丁二酸)研究在不同酸性条件(pH为2~6)下Pb、Cd、Zn、Cu的浸出效果。结果表明,有机酸的浸提能力明显高于无机酸,且4种重金属的浸出浓度均随着pH的升高而迅速降低。对无机酸而言,当pH3时,重金属的浸出浓度趋于稳定;对有机酸而言,在pH为2~5的较大范围内,醋酸表现出较高的浸提能力,而柠檬酸对Pb和Cu没有明显的浸出效果。结合泥质特点,从重金属的络合、沉淀、水解、吸附等反应过程对其浸出特征进行了分析,同时提出醋酸良好的缓冲能力是其浸提效果优于其他有机酸的重要原因。  相似文献   

4.
A washing process was studied to evaluate the efficiency of saponin on remediating heavy metal contaminated soils. Three different types of soils (Andosol: soil A, Cambisol: soil B, Regosol: soil C) were washed with saponin in batch experiments. Utilization of saponin was effective for removal of heavy metals from soils, attaining 90-100% of Cd and 85-98% of Zn extractions. The fractionations of heavy metals removed by saponin were identified using the sequential extraction. Saponin was effective in removing the exchangeable and carbonated fractions of heavy metals from soils. In recovery procedures, the pH of soil leachates was increased to about 10.7, leading to separate heavy metals as hydroxide precipitates and saponin solute. In addition recycle of used saponin is considered to be effective for the subsequent utilization. The limits of Japanese leaching test were met for all of the soil residues after saponin treatment. As a whole, this study shows that saponin can be used as a cleaning agent for remediation of heavy metal contaminated soils.  相似文献   

5.
Heavy metals of the Tibetan top soils   总被引:1,自引:0,他引:1  

Objective

Due to its high elevation, rare human activities and proximity to south Asia where industries are highly developed, it is required to investigate the fragile environment of the Tibetan Plateau. We are aiming to obtain the concentration level, source, spatial distribution, temporal variation and potential environmental risk of Tibetan soils.

Methods

A total of 128 surf ace soil samples were collected and analyzed f or V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb, and an additional 111 samples were analyzed f or Hg and total organic carbon. Concentration comparisons coupled with multivariate statistics were used to analysis the sources of elements of soils. We also carried out Risk assessment on the soils.

Results

Concentrations of Hg, Cr, Ni, Cd and Pb are slightly higher than those of the late 1970s. Concentrations of Cr and Ni are higher than averaged world background values. Tibetan soils present a high natural As concentration level.

Discussion

Anthropogenic sources may partly contribute to the elevated Hg, Cd and Pb concentrations. Cr and Ni are mainly originated from soil parent materials. Soil elements in Anduo and Qamdo regions may threaten the health of local people.

Conclusion

Heavy metal elements of Tibetan Plateau are mainly from the natural source. Arsenic present a high background level. Soil elements in Anduo and Qamdo regions may threaten the health of local people, which should be of concern to scientists and the government.  相似文献   

6.
Urban environmental geochemistry of trace metals   总被引:2,自引:0,他引:2  
As the world's urban population continues to grow, it becomes increasingly imperative to understand the dynamic interactions between human activities and the urban environment. The development of urban environmental geochemistry has yielded a significant volume of scientific information about geochemical phenomena found uniquely in the urban environment, such as the distribution, dispersion, and geochemical characteristics of some toxic and potentially toxic trace metals. The aim of this paper is to provide an overview of the development of urban environmental geochemistry as a field of scientific study and highlight major transitions during the course of its development from its establishment to the major scientific interests in the field today. An extensive literature review is also conducted of trace metal contamination of the urban terrestrial environment, in particular of urban soils, in which the uniqueness of the urban environment and its influences on trace metal contamination are elaborated. Potential areas of future development in urban environmental geochemistry are identified and discussed.  相似文献   

7.
Atmospheric concentrations of Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb are reported for 59 weekly air filter samples collected over the Kiel Bight. The contributions of sea salt, mineral dust and anthropogenic emissions to each of these elements were assumed to be represented by the concentrations of indicator elements, which were Na, Al and Zn, respectively. Based on this assumption a multiple regression analysis was applied to the concentration data. The results showed that atmospheric sea salt contributed significantly only to Sr and, of course, Na. Considerable portions of Al, K, Ca, Ti, Cr, Mn, Fe, Rb, Sr and Ba were derived from mineral dust. Anthropogenic sources were responsible for total V, Ni, Cu, Zn, As and Pb, and there was an anthropogenic component for most of the other elements.Moreover, the anthropogenic contribution was characterized by a nearly constant composition with respect to Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Rb, Sr, Ba and Pb, indicating that trace metals over the Kiel Bight are mainly derived from one source area. This conclusion was confirmed by correlating anthropogenic trace metal concentrations with the wind direction. A 40° wind sector directed to the south of the sampling site was identified as the major pathway for the transport of anthropogenic trace metals to the Kiel Bight.  相似文献   

8.
Soil samples with a range of chemical and physical properties were collected from 10 different rural regions of China. Trace metals (Ni, Co, Cu, and Pb) in the soils were partitioned by a sequential extraction procedure into Mg(NO(3))(2) extractable (F1), CH(3)COONa extractable (F2), NH(2)OH.HCl extractable (F3), HNO(3)?H(2)O(2) extractable (F4), and residual (F5) fractions. Chemical fractionation showed that F1 fraction of the metals was less than 1% and residue was the dominant form for Cu and Ni in all samples, and for Co in most of the samples. Significant interrelationships of the fractions varied considerably with the different metals. Winter wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.) had been grown on the soils in a pot-culture experiment under greenhouse conditions for 40 days. Metal availability to the plants was evaluated by simple and multiple regression analysis. The Mg(NO(3))(2) extractable Co (F1) was significantly correlated with Co concentrations in different parts of wheat and in the whole of alfalfa. For the other metals, the independent variables of the multiple regression models, chosen by stepwise selection, were given as: F1 and F2 + F3 + F4 for Ni; F1, F2 + F3 and F4 for Cu; and F3 + F4 for Pb. The results of this study demonstrate that the sequential extraction procedure, in conjunction with multiple regression models using a combination of correlated fractions as an independent variable, may be useful for the prediction of plant absorption of trace metals in soils.  相似文献   

9.
Salinity increases mobility of heavy metals in soils   总被引:11,自引:0,他引:11  
The effect of salinity induced by CaCl2, MgCl2, NaCl and Na2SO4 on the mobility of Cu, Cd, Pb and Zn was studied. An increase of ionic strength by any salts promoted a higher release of Cd than the others metals. When CaCl2 and NaCl were applied, Cd and Pb showed the highest degree of mobilization. When MgCl2 was applied, Cd and Cu were mobilized the most. Finally, an increase of Na2SO4 also promoted the strongest mobilization of Cd and Cu.As the total heavy metal content was higher, the percentage of Pb and Cu released upon salinization decreased, indicating that these metals are strongly bound to soil constituents. An increase of carbonates in the soil promoted a higher release of Pb for all used salts and for Zn when MgCl2 and NaCl were used. This indicates that Pb and Zn are adsorbed on the surface of carbonate crystals. An increase of fine particles promoted a decrease of percentage of released Cd for all salts, indicating that Cd is strongly retained in the fine fractions.The main mechanism regulating Pb and Cd mobility was competition with Ca2+ for sorption sites followed for metal chloro-complexation, association between the Cd/Pb-sulfates and competition with Mg2+. The main mechanism regulating Cu mobility was the formation of Cu-sulfate, followed by competition with cations (Mg > Ca) and chloride. For Zn, competition with Ca2+ for sorption sites was the most important process for its mobility; followed by Zn-sulfate association and, finally, chloride and competition with Mg with the same effect.  相似文献   

10.
Deposited gas-purifier wastes are commonly contaminated with trace metals, sulfate and cyanide (CN) compounds. We investigated their release from three soils contaminated with gas-purifier wastes into solution in microcosm experiments under varying redox conditions (E(H) 170-620 mV). The soils differed in pH (2.2; 4.9; 7.4) and featured low amounts of trace metals, but large amounts of total S and total CN. The pH governed trace metal release in the case of the acidic soil and CN release in the case of the slightly alkaline soil. The redox potential controlled trace metal and CN release in the case of the moderately acidic soil. Sources of dissolved SO(4)(2-) were dissolution of gypsum, desorption from Fe oxides and probably oxidation of elemental S. The geochemical behaviors of trace metals (soluble under acidic and reducing conditions) and CN (soluble under alkaline and oxidizing conditions) were diametrically opposed.  相似文献   

11.
Metal ions interact with biological materials and their decomposition products by ligation (coordination complex-formation with certain moieties containing O, N, S, etc.). The extent of this interaction depends on the identities of both ligand and metal ion and can be described by some equation derived from perturbation theory. Uptake of metal ions - including highly toxic ones - from soils is controlled by a competition between root exudate components and soil organic matter (SOM) for the ions. SOM consists of a variety of potential ligands which evolve during humification towards more efficient binding (retention) of metals such as Cu, Ni, Cr but also of toxicants like U, Cd. The actual way of interaction can be inferred from stoichiometry of the involved compounds and the C/N ratio in the soil, providing predictions as to which metals will be most efficiently shuttled into green plants or fungi, respectively. The latter, selective process is crucial for closing nutrient cycles and sensitively depends on C/N ratio and the extent of "forcing" by onfalling leaf or needle litter. Therefore, analytical data on the soil can be used to predict possible risks of exposition to toxic metals also for human consumption of plant parts.  相似文献   

12.
The size distributions of Ba, Cd, Co, Cu, Hg, Mn, Ni, Pb, Sn, Se, Sr, Zn and Fe in atmospheric aerosols were measured using impactors at three background sites in central England and southern Scotland. Coarse aerosols (>10.0 μm) were found to be undercollected by a micro-orifice uniform deposit impactor (MOUDI) when compared to an isokinetic technique, to a degree dependent on the size distribution of individual metals. The size distributions obtained in Scotland, which were typically trimodal, differed from those in central England, where modes were more variable.Characteristic size distributions allowed identification of three main behavioural types: (i) metals whose mass resided mainly within the accumulation mode (Cd, Sn, Pb, Se), (ii) those which were distributed between fine, intermediate and coarse modes (Ni, Zn, Cu, Co, Mn, Hg), and (iii) those which were mainly found within coarse particles (Fe, Sr, Ba). The measured distributions are believed to result from a combination of processes including local anthropogenic and natural sources, long-range transport and resuspension.  相似文献   

13.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

14.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

15.
Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment.  相似文献   

16.
The concentrations of lead, zinc, copper, manganese, cadmium and calcium have been measured in three peat bogs. The distribution of Pb, Zn, Mn and Ca are dependent on the position and fluctuations of the water table. They all become depleted in the waterlogged, anaerobic zone. Copper and cadmium are uniformly distributed and appear to be immobilised, probably by the formation of metal/organic complexes, and independent of the acid and redox conditions existing in the bogs. The use of the concentration profiles of the metal ions as a means of historical monitoring of trace metal contamination is complex for Pb, Zn, Mn and Ca but may be more straightforward for Cu and Cd.  相似文献   

17.
In order to gain more information on the possible use of four gastropod species as metal biomonitors for the Mediterranean area, the influence of body weight upon Cd, Cr, Cu, Pb and Zn concentrations was studied in specimens collected at locations with different degrees of environmental pollution. The selected species were the marine snails Monodonta turbinata Born and Monodonta mutabilis Philippi, and the limpets Patella caerulea L. and Patella lusitanica Gmelin. Significant differences between metal concentrations in individuals from different stations were tested by ANCOVA on log-transformed data with log body weight as covariate. For all species a positive correlation between metal concentrations and body weight was observed, which means that the largest individuals contained the highest levels of metals. The inclusion of body weight as covariate in the statistical analysis explained from 81% to 99% of the metal variability within the organisms and enabled the achievement of improvements in the detection of differences among sites. The four selected species provided a rather univocal picture of bioavailable metal loads at the different stations of the experimental area. Except for Cd, the metal concentrations recorded at the clean stations were found to lie in the range of the lowest values reported in the literature and can be employed as useful background levels which can be referred to for intraspecific comparison within the Mediterranean area. It is concluded that in view of its distribution, unambiguous identification, resistance to pollution and accumulation patterns M. turbinata has considerable potential as a biomonitor of trace metals over the Mediterranean.  相似文献   

18.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

19.

The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号